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Abstract 

We propose a general procedure to address real life job shop schedul­
ing problems. The shop typically produces a variety of products, each 
with its own arrival stream, its own route through the shop and a given 
customer due date. The procedure first determines the manufacturing lot 
sizes for each product. The objective is to minimize the expected lead 
time and therefore we model the production environment as a queueing 
network. Given these lead times, release dates are set dynamically. This 
in turn creates a time window for every manufacturing order in which the 
various operations have to be sequenced. The sequencing logic is based 
on an Extended Shifting Bottleneck Procedure. These three major de­
cisions are next incorporated into a four phase hierarchical operational 
implementation scheme. A small numerical example is used to illustrate 
the methodology. The final objective however is to develop a procedure 
that is useful for large, real life shops. We therefore report on a real life 
application. 

*This research was supported by the National Science Foundation (NFWO/FKFO Belgium), 
project 2.0053.93 
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1 Introduction 

The production environment modelled in this paper, can best be described as a 
multi-operation job shop scheduling problem under an assemble(make)-to-order 
customer policy. Customers arrive dynamically with a request for work. Each 
customer order is characterized by a certain volume and mix and an agreed due 
date. There is no inventory of finished products, so the orders placed in the 
shop enter a backlog, or queue of orders. Each order requires several operations 
on different machines, the routes which are characterized by a bill of processes 
are not necessarily the same for each order. We moreover explicitly include the 
stochastic nature of the production system. The stochastic nature is on the 
level of the customer orders itself (the shop typically produces a large variety 
of products each with its own stochastic arrival stream) and on the level of the 
shop floor, where processing and setup times are not deterministic due to all sorts 
of variability and disruptions. In this paper we propose a general procedure to 
address this problem. It is clear that this problem has attracted a great deal of 
atte:Q-tion from many researchers. The situation we have in mind, is very similar 
to the one described by Wein and Chevalier [20J, although we propose a different 
methodology. 

The hierarchical approach we propose consists of three important decisions. 
The first decision can be best described as a lot sizing decision. Individual cus­
tomer orders for the same product are grouped into manufacturing orders. The 
lot sizing policy is a typical fixed order quantity rule, grouping customer orders in 
preferably small lots which are frequently produced. The lot sizes are the outcome 
of a queueing model. The whole production system is modelled as a queueing 
network, in which all operations (and its parameters) and arrival streams are 
stochastically represented. The outcome of this exercise are lot sizes per product 
which minimize the expected lead time. There are many multi-product, multi­
machine queueing networks described in the literature (e.g. Leung and Suri [18]). 
We developed our own network approach where all parameters are a function of 
the lot size (see section 2). The queueing approach has many advantages, it ex­
plicitly includes the convex relationship between lot sizes and lead times (see e.g. 
Karmarkar [14J and Lambrecht and Vandaele [17]), it takes care of congestion 
phenomena (the impact of the utilization of the most heavily loaded machines), 
it quantifies the queueing delays and it takes into account the stochastic nature 
of the problem. The result of the queueing network are target lot sizes (of man­
ufacturing orders) which give an indication of how customer orders have to be 
grouped. We just described our lot sizing rule as a fixed order quantity rule. This 
is not accurate. We group customer orders in such a way that we approach the 
target lot sizes as close as possible. Given the time varying nature of the cus­
tomer demands, the manufacturing orders may actually differ from order to order, 
but on the average we aim for lot sizes minimizing the expected lead time (and 
work-in-process). Given this grouping of real customer orders, we characterize 
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our model rather as a make-to-order policy than a make-to-stock approach. 
The second major decision is the determination of the release date of the 

manufacturing orders. The release date is set equal to the due date minus the lead 
time estimate of the manufacturing order. The estimate of the lead time is equal 
to the expected lead time plus a safety lead time. The safety lead time depends 
on the customer service. The lead time estimate is such that we expect to satisfy 
customer orders timely P % of the time. The question is what amount of safety 
time do we have to add to the expected lead time (for every manufacturing order) 
so that a customer service of P % is obtained. This of course requires knowledge 
of the probability distribution of the lead time. Therefore, an estimate of the 
variance of the lead time is mandatory. This variance is also an outcome of our 
queueing model. It is interesting to note that we start from a given due date and 
that, consequently, we do not assign due dates to exogenously arriving jobs. This 
approach is different from the one adopted by Wein and Chevalier [20]. 

The third major decision concerns the sequencing policy. In the previous step 
a time window is created for every manufacturing order. This time window is 
the estimate of the lead time (expected lead time plus safety time). Within these 
time windows (one for every manufacturing order) we now have to sequence all 
operations in detail. We opted for the shifting bottleneck procedure (Adams, 
Balas and Zawack [1]) for various reasons, one being its excellent performance 
as described by Ivens and Lambrecht [13]. The shifting bottleneck procedure 
has to be adopted so that it can be used to sequence the operations for our 
general job shop environment including assembly operations, release dates, due 
dates, overlapping operations, multiple resources (machines and labour force), 
setup times, calendars and many other real life features. The ESBP (Extended 
Shifting Bottleneck procedure) is described in section 3. 

This methodology, based on three major decisions (the lead time estimation, 
the releasing decision and the sequencing policy), is next transformed into a hi­
erarchical, four phase, operational implementation scheme. This implementation 
scheme is summarized in figure 1. 

The four phases of the implementation can be summarized as follows. Phase 
one is the lead time estimation and lot sizing step. In this phase the manufac­
turing system is transformed into a queueing network (based on customer orders, 
the various resource types, calendars, routings, etc.). The outcome are lot sizes 
and lead time estimations. The second step is a tuning phase. Management may 
consider the lead times as unacceptable. To remedy the situation, management 
may decide to adjust the capacity structure (e.g. overtime), to off-load heavily 
loaded resources, to consider alternative routings or to reassign new due dates. 
The adjustments may result in a new run of the queueing model. The actions 
to be taken here depend upon the practical situation on hand. The next phase 
is the scheduling phase, including (a) the grouping of customer orders into man­
ufacturing orders (b) determining the release date for each manufacturing order 
(which is set equal to the due date minus the lead time estimate) and (c) the 
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Figure 1: The four phase hierarchical approach of CLIPS 

detailed sequencing of all operations. In the final phase, the detailed plans are 
transferred to the shop floor on a real-time basis. Through electronic data cap­
tation, information concerning the execution of the detailed plan, is fed back so 
that rescheduling can be done. The nature and frequency of rescheduling heavily 
depends on the dynamics of the real life situation and the level of responsiveness 
required. 

The system described above was named CLIPS (Capacity and Lead Time 
Integrated Procedure for Scheduling) and has been fully implemented in a metal 
working company. The applications will be described in section 4. 

The major advantages of our approach are the following: a simultaneous treat­
ment of the capacity and material flow in every step of the procedure. Lead times 
are estimated through a queueing model taking into account congestion phenom­
ena and the queueing impact of lot sizing. The estimation of a time window for 
sequencing (release date, due date) includes a safety margin so that customer 
service targets can be specified. The tuning phase allows a management inter­
vention to manage the capacity/inventory (lead time) trade-off. The scheduling 
phase copes with the complexity of detailed scheduling while the dynamics of the 

4 



floor are captured in the execution phase. 
The remainder of the paper is organized as follows. The lead time estimation 

and lot sizing phase is discussed in section 2. The scheduling phase is explained 
in section 3. We use a small example to illustrate the algorithms. This small 
example is only used for illustrative purposes and does not reflect the full potential 
of the methodology to tackle real life problems. To get a better idea of this 
potential we discuss a real life application in section 4. We draw conclusions in 
section 5. 

2 Lead time estimation and lot sizing phase 

2.1 Introduction 

In CLIPS, the production environment is modelled as a network of queues. In this 
analytic approach, equations (for the expected lead time and the variance of the 
lead time) are derived that capture the dynamics of the system in an aggregate 
way. The arrival process for each product is characterized by the average customer 
demand quantities and the average and variance of the order interarrival times. 
The exogenous arrival rate can be derived from historical data or from demand 
forecasts depending on the availability of data. The other parameters are: the 
service times (average and variance of both setup and unit processing times) and 
shop parameters such as routings and calendars. The outcome of the model are 
explicit functions for the expected lead time and variance of the lead time as 
a function of the lot size. We assume a constant lot size per product over the 
entire routing. Next an optimization routine is used to find the lot sizes that 
minimize the expected lead time. We call these lot sizes 'target lot sizes'. A 
lognormal distribution is postulated to characterize the lead time distribution. 
This in turn allows the user to specify a lead time, satisfying a predetermined 
customer service. 

Throughout the paper a small example will be used to numerically illustrate 
the various steps of our procedure. The shop, a small metal shop, is shown in 
figure 2. The metal shop fabricates two products, P and S and has three machine 
(centers) types: a cutter (C), a grinder (G) and a lathe (L). Product P has three 
stages on its route (on machine C, G and L) and product S has two stages (on 
machine Land G). The shop runs three shifts per day, seven days a week. There 
is one machine available of each type. The customer demands (we only show 
the demands for next month) are summarized in table 1. As can be seen, we 
have 5 customer orders for product P and 15 orders for product S. Each order is 
characterized by an order quantity, a due date and an interarrival time. 

Table 1 has to be interpreted as follows: one unit of product P has to be 
delivered at day 22, 5 units at day 28, 3 units at day 37, etc. The order inter arrival 
times can be derived easily (we assume that we are currently on day 14). The 
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Figure 2: The layout of the small metal shop 

processing and setup times are summarized in table 2 (all times are expressed in 
hours). 

In table 2 it can be seen that both the cutter and the lathe have deterministic 
setup and processing times. The grinder faces exponentially distributed setup 
and unit processing times, because this operation has to be constantly monitored 
and adjusted by a worker. 

2.2 Model derivation 

We will now discuss the formal treatment of the lead time estimation and lot 
sizing phase. Assume k to be the product index (k = 1 ... K), m the machine 
index (m = 1 ... M) and 0 the operation index for product k (0 = 1 ... Ok), where 
Ok is the number of operations for product k. For each product k we have Ck 

orders (customer orders or forecasts). Each order c for product k (1 :S c:S Ck) is 
characterized by an order quantity OQkc and an order due date DDkc . From the 
sequence of order due dates, the order interarrival times Ykc can easily be derived 

(1) 

which is, for product k, the elapsed time between order c - 1 and order c. Other 
characteristics of the order arrivals can be derived 

1 Ck 

Y k = -C LYkc 
k c=l 

(2) 
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Yp 144 Y s 48 
2 

SyP 3744 2 
SYs 494 

2 
cyP 13/72 2 

cYs 3/14 
Ap 1/144 AS 1/48 
OQp 3 OQs 2 

As far as the production characteristics are concerned, the following is defined 
for product k and operation 0, expressed in hours: 

Tko setup time random variable 
X ko unit processing time random variable 
Tko expected setup time 
X ko expected unit processing time 
/-Lko unit processing rate (= 1/ X ko) 

sho variance of the setup time 
S2 variance of the unit processing time X ko 

c2 scv of the setup time 
Tko 

c3..:-ko scv of the unit processing time 

In addition, define 
Okom 1 if operation 0 for product k is on machine m 

o otherwise 
The routing of the metal shop gives us 

o PIC = 1 0 P2G = 1 0 P3£ = 1 
OSl£ = 1 OS2G = 1 

and all other Okom'S equal o. 
A this point all the input parameters are given. We use a queueing network 

approach to model the job shop. The job shop is viewed as a network of ma­
chines which are linked by the various flows (routings). Each machine is modeled 
as a multi product lot sizing model with queueing delays. The multiple arrival 
processes of the k products are superposed into one aggregate arrival process. 
All characteristics of the aggregate arrival process and the aggregate production 
process are functions of the lot sizes Qk. Note that we express in our derivations 
Qk as a multiplier of the average order quantity OQk. For each machine m we 
have to obtain: 

Aba", the aggregate batch arrival rate 
c2 the scv of the aggregate batch inter arrival time ba1n 

c'~a", the scv of the external aggregate batch interarrival time 
/-Lbs m the aggregate batch processing rate 
c~s", the scv of the aggregate batch processing time 
p'm the adapted traffic intensity 
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the proportion of batches leaving machine m and going outside, F, the transition 
matrix of fmn (m, n = 0 ... M). 

Solving the following set of linear equations yields the M unknowns c~a"" 
m=O, ... ,M: 

M 

- L Abanf~m(1- p~)c~an + Aba",C~a", = 
n=l 

M 

L Abanfnm(jnmp~2c~Sn + 1- fnm) + A~a"/~a,,, 
n=l 

(15) 

Equations (15) are a slightly adapted version (in terms of general exogenous 
arrivals instead of Poisson arrivals) of the results obtained by Shantikumar and 
Buzacott [19]. The entrances of the transition matrix F are obtained as follows: 

fOn 

fmn 

fmo = 

m=l 

1 K Qk-1 

-A- L L Abkbkombko+1n 
barn k=l [=1 

1 K 
~ L AbkbkOkm 

ba", k=l 

(16) 

(17) 

(18) 

for n = 1 ... M and m = 1 ... M. Note that in our model, due to the fact that 
the routings are given, we face deterministic routing. Therefore, the transition 
matrix F can be derived in the way described above. 

Returning to the small metal shop we have the following transition matrix F: 

0 C G L 

0 0 48Qs 0 144Qp 
48Qs+144Qp 48Qs+144Qp 

C 0 0 1 0 
G 144Qp 0 0 48Qs 

48Qs+144Qp 48Qs+144Qp 

L 48Qs 0 144Qp 0 48Qs+144Qp 48Qs+144Qp 

K 

To obtain c'~a", we use the following approximation if L bk1m 2: 2 
k=l 

1 2 K 2 

,2 '" CYk 
C bam :::::;:3 +:3 L... 'ifm k1 -Q 

k=l k 
(19) 
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where 

7fm kl = 
AbkDklm 

K 

K 

2: AbkDklm 
k=1 

If 2: Dklm = 1 then 
k=1 

2 
,2 CYk 

C bam = Qk 

(20) 

(21) 

The approximation for c'~am is the sum of a constant and a weighted average of 
the scv's of all the external batch arrivals at machine m. It is an interpolation 
between complete deterministic arrivals (where the aggregate scv is approximated 
by the scv of a uniform distribution U[O, 2/ A~aJ and the scv of Poisson arrivals 
(where all scv's equal one). The lather is the only known exact result in the 
literature for the superposition of arrival processes. The weights 1/3 and 2/3 in 
the expression for c'~am are a particular instance of the general approximation 
described by Albin [2], [3]. For our illustrative example we obtain 

,2 13 1 
C bac 72 Qp 

,2 ° C baG 
,2 3 1 

C baL 14Q5 

Then finally the lead time for product k on machine m for operation 0 

M 

E(Wko ) = 2: E(Wqm)Dkom + Tko + QkOQkXko 
m=1 

with 

The aggregated objective function for machine m can be stated as follows 

where 

, A~k 
7fmk = T 

m 

12 

(22) 

(23) 



with 
Ok 

A~k = L AkOQkDkom (24) 
0=1 

and 
K Ok 

A~ = L L AkOQkDkom (25) 
k=10=1 

This objective function for machine m is the weighted average over the products 
visiting machine m, which on their turn are weighted averages over the operations 
on machine m for product k. Note that weight 7r'mk is independent from the 
manufacturing lot size. It measures the relative importance of product k for 
machine m. This is in contrast to the weights for instance used by Baker [5J, 
who uses weights which are function of the manufacturing lot size. Because the 
manufacturing lot size is a decision variable, these weights can turn to zero for 
large lot sizes so that the respective term in the objective function can grow to 
infinity without penalty. This observation led us to remove the decision variable 
from the weights. 

The objective function for the total job shop becomes 

E(W) = t E(W qm) + t 7r~ [QkOQk - 1J")/\ + 
m=1 k=1 20Qk 

"" I ~ AkOQkDkom - - -M K (0 - ) 
~1 ~ 7rmk ~ A~k [Tko + QkOQkXkoJ (26) 

where 

(27) 

k=10=1 

The latter weight takes care of the relative importance of product k for the 
total job shop. The second term of equation (26) measures the average waiting 
time finished batches have to wait until their due date. For the metal shop the 
objective function for the entire job shop equals 

E(W) = E(Wqc) + E(Wqc) + E(WqJ + 20 + 90Qp 
1 2 1 

+3(20 + 30Qp) + 3(20 + 20Qs) + 3(24 + 36Qp) + 
2 
3(16 + 16Qs) + 8(3Qp - 1) + 8(2Qs - 1) 

At this point the formulation of the job shop is complete. Remark that in 
contrast to traditional queueing networks, our approach includes some new ap­
proximations and that every quantity is an explicit function of the manufacturing 
lot size. 
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2.3 Optimization and decomposition 

The minimization problem involves a non-linear objective function and a set of 
simultaneous non-linear constraints. A dedicated optimization routine has been 
developed and is discussed in Lambrecht, Ivens and Vandaele [16]. The optimal 
lot sizes for the small metal shop are (rounded) Qj, = 4 and Qs = 6 while the 
aggregate objective function value of the job shop equals 501. The decomposition, 
after the optimization, can be summarized as follows. The optimal lot sizes Qk 
(or the vector Q*) for each product are used to calculate the expected lead time 
of operation 0 of product k on machine m 

M 

E(Wko) = L E(Wqm(Q*))8kom + Tko + Q~OQkXko (28) 
m=l 

The first term is clearly common for all products using machine m. The total 
lead time of product k (for the whole routing) is given by 

E(Wk) = ~ E(W ) = Qk(OQk - l)Yk + 1:1 ko 20Qk 

product 

p 

s 

optimal 
lot size 

5 

6 

Ok M Ok Ok 

L L E(Wqm(Q*))8kom + LTko + LQ~OQkXko 
0=1 m=l 

operation 

cutter 
grinder 
lathe 
stock 
total 

lathe 
grinder 
stock 
total 

adapted traffic 
intensity (%) 

73 
87 
82 

87 
82 

0=1 

waiting 
time 

7 
109 

42 

42 
109 

0=1 

setup 
time 

20 
20 
24 

16 
20 

processing 
time 

120 
40 
48 

48 
60 

Table 3: Optimal lot size and lead time for the metal shop 

(29) 

lead 
time 

147 
169 
114 

72 
502 

106 
189 

60 
355 

This is illustrated in table 3. From this table it can be seen that there is a 
small queue in front of the cutter. On the other hand, both the grinder and the 
lathe face long waiting times compared to their processing times. This is mainly 
due to the high adapted traffic intensities. The waiting time for the grinder is 
even larger. This is obviously due to the stochastic nature of that facility. The 
operation 'stock' is the average time that the finished goods from a completed 
manufacturing batch have to wait until their due date. 
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The variance of the total lead time of product k equals 

V(Wk) = QkOQk -1 S2 + (QJJQk - l)(QkOQk + 1y2 + 
20Q~ Yk 120Q~ k 

Ok Ok Ok 

LV(W qm)6kom + L S~kO + L QkOQkS'to (30) 
0=1 0=1 0=1 

The term V(W qm) is derived in appendix. For our example, the standard 
deviation of the total lead time is 158 for product P and 154 for product S which 
suggests that the lead times are highly variable. 

If the lognormal distribution is assumed, then the parameters are 

In (31) 

(32) 

The lead times, including safety time, are obtained in the following way. 
W Pk is the total lead time guaranteeing a service of Pk %. This means that the 
manufacturer will satisfy this lead time Pk % of the time for product k. Then 

(33) 

where ZPk can be obtained from the standard normal table ( Pk is the required 
percentile for product k). In the sequel, we will call W Pk the planned lead time, 
because it will be used to fix the planned release date. For our example we obtain 
(for some values of Pk ) 

Product P 
Product S 

80% 90% 95% 99% 
621 710 794 980 
463 554 644 855 

3 Scheduling Phase 

In the scheduling phase, basically three types of decisions have to be taken. 
First, customer orders have to be grouped into manufacturing orders, approaching 
the previously calculated target lot sizes as close as possible. Next, we have to 
establish a release date for each manufacturing order. Finally all non-completed 
operations of both newly released and in-process manufacturing orders have to 
be sequenced on the different machines. We briefly discuss each of these three 
steps. 
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3.1 Grouping of Customer Orders into Manufacturing 
Orders 

The problem addressed here is the grouping of Ck customer orders of product 
k, characterized by a quantity OQkc (1 :::; c :::; Ck) and a due date DDkc (1 :::; 
c :::; Ck), into a number of manufacturing orders Lk1(l = 1, ... ,Sk) of which the 
number of units ideally approach the previously fixed target lotsize Qk. 

For each product k, we first fix the number of setups 

(34) 

where L·J is the largest integer smaller than or equal to .. In our case Sp equals 
3 (LI5/4J) and S5 equals 5 (L30/6J). From table 1 we learn that there are 5 cus­
tomer orders for product P and 15 customer orders for product S. The grouping 
into manufacturing lots can be done in several ways. It is clear that this problem 
can be formulated as an integer programming model or, more elegantly, trans­
formed into a dynamic programming formulation. Given the standard nature of 
this problem we omit the formulation. It is however important to mention that 
the objective function we used minimizes the number of inventory-days. In table 
4 we summarize the results for our illustrative case where QLk1 stands for the lot 
size of the new manufacturing orders. 

product Lkl Grouped QLk1 
Customer orders 

P L pI 1-2 6 
L p2 3-4 5 
L p3 5 4 

S LSI 1-2-3 6 
LS2 4-5-6 5 
LS3 7-8 5 
LS4 9-10-11-12 9 
LS5 13-14-15 5 

Table 4: The manufacturing lot sizes 

3.2 Release of New Manufacturing Orders 

For the newly determined manufacturing order quantities, QLkl' we have to com­
pute the corresponding expected lead time and the planned lead time (which 
includes safety time). We therefore use the equations (29), (30) and (33) which 
are derived in section 2.3. Next, the planned lead times are deducted from the 
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due dates to obtain the release dates for each manufacturing order. These results 
are summarized in table 5 (we plan for a 95% service level). The due date for L pI 

is day 22 (it includes customer orders 1 and 2) so the due date in hours equals 
528 from now. 

Manufacturing Due Expected Planned Release 
Lot Date Lead Time Lead Time Date 

(hours) (hours) (hours) (hours) 
LpI 528 534 581 -53 
Lp2 888 482 534 354 
Lp3 1056 430 488 568 
LSI 408 295 380 28 
LS2 528 277 368 160 
LS3 648 277 368 280 
LS4 792 349 422 370 
LS5 936 277 368 568 

Table 5: Release Dates of the Manufacturing Orders 

3.3 Detailed Scheduling of the Operations 

At this stage of our procedure, all non-completed operations of manufacturing 
orders are scheduled between the release date (or the current moment if the order 
is overdue) and the due date of the order. Detailed scheduling requires to specify 
for each operation of each manufacturing order Lk1(k = 1, ... K, l = 1, ... Sk) 
when it has to be performed and by what resource, explicitly taking into account 
the limited availability of the various resources and many other constraints such 
as precedence among operations, release dates and due dates. A schedule needs 
to optimize a predetermined objective. Many production managers strive for due 
date performance, short lead times and low in-process inventory levels. 

The well known job shop scheduling problem is the theoretical abstraction of 
this problem and has been subject of numerous research efforts. Both optimal 
and heuristic solution procedures are proposed in the literature. Recent integer 
programming based models can be found in Balas [6] and Applegate and Cook [4]. 
Among others, Lageweg, Lenstra and Kan [15]' Carlier and Pinson [11], Brucker, 
Jurisch and Sievers [9] and Brucker, Jurisch and Kramer [8] propose implicit enu­
meration methods for solving the job shop problem. The problem can be stated 
as follows. N operations have to be scheduled on .!vI resources. Each operation 
requires a particular resource. A resource can process only one operation at a 
time and preemption of processing is not allowed. Precedence constraints among 
operations may exist (e.g. between operations of the same order). A schedule has 
to be found so that the makespan is minimal. The job shop scheduling problem 
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can be formalized as follows 

mm C 
Subject to C ~ ti + Pi Vi E N 

tj ~ ti + Pi V( i, j) E A 
ti ~ tj + Pj V tj ~ ti + Pi V( i, j) E Em, Vm E M 
ti ~ 0 Vi E N 

with C, the makespan of the schedule, M, the set of all available resources, N, 
the set of all operations to be scheduled, Pi, the processing time of operation 
i, t i , the starting time of operation i, A, the set of all pairs of operations (i, j) 
for which i has to precede j, Em, the set of all pairs of operations that require 
the same resource m, Unfortunately, the job shop scheduling problem is NP­
hard in the strong sense. This implies that there is little hope to find optimal 
solutions to large real-life scheduling problems within reasonable computer time. 
For practical applications heuristic schedule generation procedures with priority 
dispatching rules are often used. Well known dispatching rules are, FCFS (First 
Come First Served), SPT (Shortest Processing Time), EDD (Earliest Due Date), 
MWR (Most Work Remaining), CR (Critical Ratio), to mention only a few. 

Adams, Balas and Zawack [1] introduced the Shifting Bottleneck Procedure 
(SBP), a new powerful heuristic for the job shop scheduling problem. Extensions 
to the SBP, such as Dauzere-Peres and Lasserre [12] and Balas, Lenstra and 
Vazacopoulos [7] increase its performance. Experiments by Adams, Balas and 
Zawack [1], Dauzere-Peres and Lasserre [12], Ivens and Lambrecht [13] and Balas, 
Lenstra and Vazacopoulos [7] indicate that SBP offers exceptionally good results 
compared to other heuristics such as priority dispatching rules. Because of the 
SBP's good balance between computational complexity and the quality of the 
generated schedules, we have chosen this procedure as the engine of our detailed 
scheduling phase. 

However, the scope of the theoretical job shop scheduling problem is far too 
limited to be applicable in practical environments. The authors therefore ex­
tended the SBP so that non-standard features such as release dates, due dates, 
assembly structures, split structures, overlapping operations, setup times, trans­
portation times, parallel machines and in-process inventory can be modelled (see 
Ivens and Lambrecht [13]). Recent extensions include the use of resource calen­
dars and the possibility that operations require more than one resource at a time. 
In addition, other performance criteria could be considered. A brief overview of 
some extensions is given below in section 3.3.3. We will first discuss the disjunc­
tive graph representation of the scheduling problem and next we will explain the 
approach of the Extended Shifting Bottleneck Procedure (ESBP) to solve the 
problem. 
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3.3.1 The Network Representation of the Job Scheduling Problem 

Problems solved by the Shifting Bottleneck Procedure are represented by an 
activity-on-the-node disjunctive graph DC = (N, A, E). N = N' U {b} U {e} with 
N' the set of nodes each representing one operation, {b} and {e} are dummy 
nodes indicating the start and the end of the schedule. Each node i E N' has a 
label Pi, the processing time of operation i. A is the set of directed (conjunctive) 
arcs, representing precedence relations between nodes (i, j) of N. E is the set of 
undirected (disjunctive) arcs, which represent precedence relations between nodes 
(i, j) of N' that require the same resource. Initially, the arcs E are undirected. 
A solution to the problem corresponds with the choice of a direction for each arc 
in E. Let E' be such a selection, i.e. a set of directed arcs. DC' = (N, A, E') is 
the graph obtained when replacing the disjunctive arcs in DC by the selection 
E'. The longest path in DC' from {b} to {e} corresponds to the makespan of the 
schedule. A feasible solution requires that DC' is acyclic. The set E(E') can be 
partitioned into m subsets E l , ... , Em (E~, ... , E'rrJ where each set Ek represents 
the disjunctive arcs connecting nodes which require the same resource k. The 
job shop scheduling problem consists of finding a selection which minimizes the 
longest path between the starting and ending node. 

3.3.2 The Shifting Bottleneck Procedure 

The Shifting Bottleneck Procedure is an iterative procedure which schedules one 
resource at a time. In each iteration two decisions have to be taken, namely 
we have to decide which resource is the bottleneck and we have to determine 
the sequence on that resource. Next, at the end of each iteration there is a 
reoptimization run on all resources scheduled so far. To formalize this, let Mo be 
the set of all scheduled resources. The Shifting Bottleneck Procedure logic can 
be summarized as follows: 

• Step 0 Mo = {} 

• Step 1 Identify the bottleneck resource m among resources M \ Mo, and 
calculate its optimal sequence, given the partial schedule on resources Mo. 
Mo = Mo + {m} 

• Step 2 Reoptimize successively the sequence of each resource mEMo, given 
the partial schedule on resources Mo \ {m}. If Mo = M then stop, else go 
to step 1. 

Both for identification and scheduling of the bottlenecks, as well as for the reopti­
mization, relaxations of the original problem are used. Problem P(Mo, m) is the 
single machine relaxation for resource m of the original job shop scheduling prob­
lem, taking into consideration all selections already made on scheduled resources. 
With each resource j E M o, a selection Ej is associated, describing the directions 
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for disjunctive arcs of already scheduled resources. Let DC'rr,(Mo) be the graph 
obtained from DC when replacing all the disjunctive arcs of the resources in Mo 
by their selections and by deleting all remaining disjunctive arcs except these of 
resource m. Let ri be the length of the longest path in DC'rr, (Mo) from node {b} 
to node i, then ri is the earliest starting time of operation i, given the partial 
schedule determined by resources in Mo and given a relaxation of resources other 
than m. For this reason, ri is called the head of operation i. Similarly, there is qi, 
the tail of operation i which equals the length of the longest path from node i to 
the end node {e}. In this way, qi is the amount of work that has to be performed 
after operation i and before the schedule can end. For the standard job shop 
scheduling problem, heads and tails can be calculated within linear time com­
plexity (see Adams, Balas and Zawack [1]). Consider now the problem P(Mo, m): 

mm C 
Subject to C:2: ti + Pi + qi 

ti :2: tj + Pj V tj :2: ti + Pi 
ti :2: ri 

Vi E Nm 

V(i,j) E Em 
Vi E Nm 

where Nm is the set of all operations which require resource m for processing. 
Problem P(Mo, m) is equivalent to a single machine scheduling problem with 
release dates and due dates. Although it is a NP-hard problem, relatively large 
instances can be solved by a branch-and-bound procedure proposed by Carlier 
[10]. For most practical applications, computer time needed to solve P(Mo, m) 
constitutes no problem. The solution of P(Mo, m) can be seen as a measure of 
the 'constraintness' of resource m, given that the resources in Mo are already 
scheduled and given that the constraints on unscheduled resources other than m 
are relaxed. The larger the objective function of this problem, the more likely 
that resource m is a bottleneck. To identify the bottleneck among unscheduled 
resources, the resource with the worst objective function is selected (i.e. the 
resource m* for which P(Mo, m*) is the minimum over all mEMo of P(Mo, m); 
the sequence on this new bottleneck is the sequence found by solving P(Mo, m*)). 

The reoptimization step goes as follows. Let R 1, . .. ,R[Ma[ be an ordering of 
the resources in Mo (e.g. the order in which they were scheduled). Then, for 
m = 1, ... , IMol solve P(Mo \ {Rm}, Rm) and replace E~ by the new sequence 
found. This reoptimization cycle can be repeated a number of times. Note that 
in the reoptimization heads and tails need to be recalculated each time that a 
different resource Rm is considered. 

3.3.3 The Extended Shifting Bottleneck Procedure 

In this section we will briefly describe the ESBP which is more suitable for real-life 
applications. For an in-depth treatment of these extensions we refer to Ivens and 
Lambrecht [13]. The extensions are modeled by an Extended Disjunctive Graph 
(EDG). This representation is similar to the DG, but arcs can have labels to 
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represent general precedence relationships such as Start-Start (SS), Start-Finish 
(SF), Finish-Start (FS) and Finish-Finish (FF). In practice, it is common to 
allow overlapping, i.e. units of a batch do not have to wait till the whole batch 
is finished, instead, products flow from one resource to another in several smaller 
transfer batches. When preemption of processing is not allowed, overlapping 
can be modelled by using SS precedence relations (or negative FS). Overlapping 
may have a considerable impact on lead time performance. Also all sorts of 
delays, forced waiting times or cooling times can be modeled by FS precedence 
relationships. 

In the standard job shop problem, operations can have only one technological 
predecessor or successor. Product assemblies and splits can easily be modelled 
by allowing multiple predecessors and successors. 

Customer or manufacturing lots can have a release date and a due date. These 
can be incorporated in the EDG by assigning FS precedence relations respectively 
between {b} and the first operation(s) of the lot (in case of release dates) or 
between the last operation( s) of the lot and {e}. We also allow restrictions on 
starting times or finishing times of individual operations (e.g. due to temporary 
unavailability of raw materials). 

In the standard job shop scheduling problem there is only one unit available of 
each resource. For some applications however, it is possible that some resources 
are available in multiple units (i.e. parallel machines). Thus, in addition to 
sequencing, an assignment of operations to resources has to be done. The EDG 
is able to model this complication. In each iteration of the shifting bottleneck 
procedure a resource type is scheduled, which requires the solution to a single or 
parallel machine problem, depending on the availability of the resource. 

3.3.4 The Metal Shop Example 

We will now illustrate the E:x:tended Shifting Bottleneck Procedure with the 
small metal shop example. The eight manufacturing orders from table 4 have 
to be scheduled. The corresponding disjunctive graph is given in figure 3. Each 
node corresponds with one operation. The numbers above the nodes indicate 
the processing time of the operation. In order to keep the figure transparent, 
the operations which have to be scheduled on the same machine share the same 
shade. 

Currently, two earlier released manufacturing orders reside on the shop floor. 
A first manufacturing lot for 5 units of product P has already passed the cutter 
and has been loaded on the grinder, on which the setup (20 hours work content) 
is already performed. So we still have to schedule 50 hours processing time for 
the operation on the grinder and a complete operation on the lathe (84 hours). A 
second manufacturing order for 6 units of product S has already spend 34 hours 
on the lathe. In addition to these two in-process orders, there are three man­
ufacturing orders with three operations and five manufacturing orders with two 
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50 84 

Figure 3: The disjunctive graph of the small metal shop 

operations. For instance nodes 4,5 and 6 symbolize manufacturing lot Lp2 . Node 
4 has a processing time of 170 hours (20 hours setup and 5*30 hours processing). 

The disjunctive graph contains all the necessary input for the ESBP. The out­
put of the ESBP is visualized in figure 4 as a gantt-chart. The gantt-chart shows 
the two manufacturing orders already in process and the eight newly released 
manufacturing orders. In this small example, for all operations scheduled, slack 
time is available as explained earlier. 

3.3.5 The Execution Phase 

In this phase, the detailed schedule will be executed. From the detailed schedule, 
dispatching and picking lists can be drawn. A data captation system can transmit 
information concerning work progression back to CLIPS. From time to time, a 
recalculation of the detailed schedule will be necessary because of the numerous 
changes on the shop floor. The frequency of recalculation is of course a function 
of the dynamics of the shop. A reoptimization of the lot sizing and lead time 
estimation phase will also be required now and then but of course less frequently. 
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Figure 4: The gantt chart of the detailed schedule 

4 Real life application 

The methodology outlined in this paper is well suited for real life applications. In 
this section we report on an implementation of CLIPS in a medium sized metal 
working company. We will stress the applicability of our approach and focus on 
the resulting benefits and savings. The moderate computational effort required 
for solving the various modules of CLIPS and the high quality solutions obtained, 
turn the procedure into an ideal decision support system for achieving continuous 
improvement. 

The metal working company we considered produces transmissions for off-road 
vehicles. There are four major processing steps: first a job shop where unhard­
ened components (shafts and gears) are produced out of raw steel components; 
then a furnace operation is performed on the shafts and gears to harden these 
components; third, the components are finished through a number of grinding 
operations; finally, they are assembled into castings on an assembly line. Our 
application focusses on the first shop where the raw steel components are trans­
formed into shafts and gears. The shop orders stem directly from the MRP 
requirements demanded by the furnace. In the future CLIPS will be expanded 
to all shops, making the current MRP system of the company superfluous. The 
subsystem we consider consists of 70 machines and produces 550 different com­
ponents which results in 3,000 different operations. On a yearly basis, this metal 
shop handles about 10,000 customer orders. 

We used the requirements of both (actual) customer orders and forecasts 
over a one year time horizon, to estimate the arrival patterns of manufacturing 
orders. Feeding the current MRP lot sizes (heuristically fixed at 1, 2, 4, 6, 
8, 12 or 16 weeks of supply) of the company into the queueing approximation 
results in an average lead time per operation of 68 hours. Then, we optimized 
the lot sizes of the 550 products on a Pentium 60 Mhz PC. After 7.5 hours, 
our dedicated optimization routine obtained a global optimum of 22 hours lead 
time per operation. The new lot sizes reduce the original lead times by 67.7 %. 
The computational effort for the optimization is rather high, but we forced an 
accuracy of 10-10 , which is not neccessary for practical applications. Moreover, 
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the optimization routine is run infrequently. An evaluation of a given set of 
lot sizes takes only about 0.3 seconds, which allows the practitioner to evaluate 
what-if data modifications quickly. 

Next, we examined the resulting lot sizes and the resulting lead times in 
the tuning phase. Here, often unsatisfactory lead times are detected. To remedy 
this, the various options of the tuning phase can be used. For instance, extremely 
large lead times occur at heavy loaded machines. Off-loading and the provision 
of additional capacity (extra shifts or overtime) can cause a considerable decrease 
in utilization and consequently in the average and variance of the lead times. It 
is crucial that all serious capacity problems, whether permanent of occasionally, 
are solved before diving into the detailed scheduling phase. A detailed analysis 
revealed that there was one machine with a utilization level of 97 %, resulting 
in unsatisfactory long average waiting times of 226 hours on that machine. We 
increased the capacity of that machine with one shift and we ran the lot sizing 
and lead time estimation routine again. This resulted in a lead time of 16.9 hours 
per operation. This is an additional improvement of 23 % achieved by adjusting 
the capacity of only one resource. 

In the scheduling phase, we group the various customer orders and forecasts 
(for a one year time horizon) into new manufacturing orders with the aid of a 
dynamic program. After determining a release date and a due date for each 
manufacturing order (with a service rate of 95%), we run the Extended Shifting 
Bottleneck Procedure. To test our approach we released all new lots resulting in 
a huge detailed scheduling problem of about 30,000 operations. For the practical 
application however, the scheduling problems are much smaller since it is not 
necessary to schedule all manufacturing orders, we can restrict ourselves to man­
ufacturing orders whose release date is within an acceptable planning period. In 
table 6 we compare the outcome of our detailed schedule with current practice in 
the company. In the first column we evaluate the schedule methods used on the 
floor before the introduction of CLIPS. These results include the old MRP lot 
sizes, no intelligent way of grouping customer orders and a slack based priority 
scheduling rule. In the second column we display the CLIPS outcome. 

performance measure 

proportion of late orders 
maximum lateness 
average lateness 
average tardiness 
average lead time 

without CLIPS I with CLIPS 

13.20 % 
19.57 days 

-29.61 days 
0.60 days 

15.72 days 

10.63 % 
3.71 days 

-5.00 days 
0.14 days 
2.31 days 

Table 6: The overall performance of the detailed schedule 

On all performance measures CLIPS outperfomed the traditional planning 
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approach. The maximum lateness is drastically reduced. The average (in pro­
cess) lead time decreased by 85%. The average lateness increases to -5 days, 
which indicates that the lead time estimation is much more accurate, resulting 
in enormous lead time and work in process savings. Still, 10.63% of the orders 
is late. This is of course a major concern. The main reason is that in certain 
time periods the shop experiences a heavy workload, too many orders are due in a 
small time period. In order to make comparison with current practice meaningful 
we did not manipulate release dates, due dates or capacity availability. However 
the tuning phase offers plenty of opportunities to manage the workload better, 
so that late orders can be avoided. The distribution of the lateness however is 
seriously improved with the CLIPS approach. 

In order to fully obtain the benefits of the proposed hierarchical approach 
suggested in this paper one has to focus on data accuracy and on some behavioral 
aspects of scheduling. As mentioned above, the current practice is based on 
priority rules. This myopic approach has to be replaced by a scheduler looking 
at all machines simultaneously. This results in a dispatch sequence which is not 
always preferred by the operators who are used to set priorities autonomously. In 
order to overcome this, one has to spend a lot of time on the floor to introduce this 
overall look and to make sure everybody is confident with the proposed priorities. 

5 Conclusion 

In this paper we proposed a general methodology to analyze and schedule a job 
shop. A four phase methodology is proposed including a lot sizing and lead 
time estimation phase, a tuning phase, a scheduling phase and an execution 
phase. In each phase we use analytic approaches which are suitable for real 
life applications. The methodology is illustrated with an example and a real life 
application is given. The CLIPS methodology is embedded in a software package. 
Our practical experience indicates that our approach has a great potential both in 
terms of computational effort required and in terms of the quality of the generated 
schedules. 
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A Appendix 

The variance of the batch waiting time is approximated by 

where c~ qrn' the scv of the batch waiting time, (J qrn' the batch probability of 
delay, P(W qm > 0), cb ,scv of the conditional batch waiting time i.e. the 

qm 

batch waiting time, given that the server is busy and d~srn = E[St]/ E(Sbrn )3. 

References 

[1] J. Adams, E. Balas, and D. Zawack. The shifting bottleneck procedure for 
job-shop scheduling. Management Science, 34(3):391-401, 1988. 

[2] S. L. Albin. Approximating queues with superposition arrival processes. 
PhD thesis, Department for Industrial Engineering and Operations Research, 
Columbia University, 1981. 

[3] S. L. Albin. Approximating a point process by a renewal process, II: su­
perposition arrival processes to queues. Technical report, Department of 
industrial engineering, Rutgers University, 1982. 

[4] D. Applegate and W. Cook. A computational study of the job-shop schedul­
ing problem. ORSA Journal of Computing, 3(2):149-156, 1991. 

[5] K. R. Baker. Requirements planning. In S.C. Graves, A.H.G. Rinnooy Kan, 
and P.R. Zipkin, editors, Logistics of production and inventory, chapter 11, 
pages 571-627. North Holland, 1993. 

[6] E. Balas. On the facial structure of scheduling polehedra. Mathematical 
Programming Study, (24):179-218, 1985. 

26 



[7] E. Balas, J.K. Lenstra, and A. Vazacopoulos. The one-machine problem with 
delayed precedence constraints and its use in job shop scheduling. Manage­
ment Science, 41(1):94~ 109, 1995. 

[8] P. Brucker, B. Jurisch, and A. Kramer. The job shop problem and immediate 
selection. Technical report, Univ. Osnabriick / Fachbereich Mathematik, 
1992. 

[9] P. Brucker, B. Jurisch, and B. Sievers. A fast branch-and-bound algorithm 
for the job-shop scheduling problem. Technical report, Univ. Osnabriick / 
Fachbereich Mathematik, 1991. 

[10] J. Carlier. The one-machine scheduling problem. European Journal of Op­
erational Research, 11:42~47, 1982. 

[11] J. Carlier and E. Pinson. An algorithm for solving the job-shop problem. 
Management Science, 35(2):164~176, 1989. 

[12] S. Dauzere-Peres and J.B. Lasserre. A modified shifting bottleneck proce­
dure for job-shop scheduling. International Journal of Production Research, 
31( 4):923~932, 1993. 

[13] P. L. Ivens and M. R. Lambrecht. Extending the shifting bottleneck proce­
dure to real-life applications. European Journal of Operational Research, To 
appear. 

[14] U. S. Karmarkar. Lot sizes, lead times and in-process inventories. Manage­
ment Science, 33(3):409~423, 1987. 

[15] B.J. Lageweg, J.K. Lenstra, and A.H.G. Rinnooy Kan. Job shop scheduling 
by implicit enumeration. Management Science, 24:441~482, 1977. 

[16] M. R. Lambrecht, P. Ivens, and N. J. Vandaele. Lead time minimization 
in a job shop environment. Onderzoeksrapport To appear, Departement 
Toegepaste Economische Wetenschappen, Katholieke Universiteit Leuven, 
1995. 

[17] M. R. Lambrecht and N. J. Vandaele. A general approximation for the 
single product lot sizing model with queueing delays. European Journal of 
Operational Research, To appear. 

[18] Y. Leung and R. Suri. Performance evaluation of discrete manufacturing 
systems. IEEE Control Systems Magazine, 10:77~86, 1990. 

[19] J.G. Shantikumar and J.A. Buzacott. Open queueing network models of 
dynamic job shops. International Journal of Production Research, 19(3):255~ 
266, 1981. 

27 



[20] L. M. Wein and P. B. Chevalier. A broader view of the job shop scheduling 
problem. Management Science, 38:1018-1033, 1992. 

28 




