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1 Introduction

In the robustness literature, various measures of robustness of an estimator 7,, have been
proposed (Hampel 1974, Huber 1981, Hampel et al 1986): influence function, change-of-
variance curve, breakdown point, maxbias curve,.... In this note we will focus on the influence
function of an estimator. This requires the existence of a functional version 7" of the estimator

such that T'(F,,) = T, where F,, denotes the empirical distribution function of the sample

X ={z1,...,2,}. The influence function of an estimator 7" at a fixed distribution F' is then
defined as
— Ay)—T(F
IF(2,T; F) = lim T =) +ehs) ~T(F) (1.1)
e 5

where A, is a distribution which puts all its mass at the point z. A finite-sample version
of the influence function is obtained by suppressing the limit in (1.1) and replacing € by
1/(n+1) and F by F,. This yields the empirical influence function (sometimes also called
sensitivity function, Hampel et al 1986, page 93)

EIF(z,T,; X) = (n + D){Tps1(x1, ..., xn, ) — Tp(x1, ..., 2n) - (1.2)

Since the EIF depends on the observed sample X = {zi,...,x,}, where each observation
x; follows the distribution F', we need to consider it as a random variable. ! One can see
EIF (z,T,; X) as the (standardized) influence of an observation x on the estimator 7,, at the
sample X. A high value of EIF(z,T,; X) means that a potential outlier at x will have a
large influence on the estimator, indicating non-robustness. This interpretation carries over
to the functional based IF(x, T'; F') since for most estimators

lim EIF(z,T,; X) =1F (2, T; F) a.s. (1.3)

n—o0o

However, if the above equality does not hold, one should be more careful with relating the
form of the influence function to the finite-sample behavior of the estimator, even for large
values of n .

In Section 2 we proof that (1.3) holds for a-trimmed means (with o < 0.5) and for
smooth M-estimators. However, (1.3) does not hold for the median. We show in Section 3
that the median has no longer the smallest gross-error sensitivity when we use a “sample-

based” instead of a “functional-based” definition of the gross-error sensitivity. In Section

!Sometimes X is taken to be a stylized sample (Andrews et al. 1972, page 96) from F, eliminating the

random character of EIF(z, T,,; X). Unfortunately, stylized samples never occur in practice.
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4 a simulation study shows that the resistance of the sample median to single outlying
observations at finite samples corresponds well with our theoretical findings. Some discussion

is presented in the last Section.

2 Convergence of the Empirical Influence Function

The univariate sample median is defined as

T(|n/2|+1) T T(|(n+1)/2
(X): (In/2] )2(L( )/J)’

where x(1) < ... < x(y,) are the ordered observations from X. The corresponding functional

med,,

is defined for every distribution G and equals
_inf{t|G(t) > 1/2} 4 sup{t|G(t) < 1/2}
5 :
It is known (Hampel et al 1986, page 109) and easy to verify that the influence function of

med(G)

the median at a distribution F' with positive density f at its median is given by

—1/(2f(med(F))) for z < med(F)
IF(z, med; F) = ¢ 0 for © = med(F) (2.1)
1/(2f(med(F))) for = > med(F).

To avoid too much technical detail, we assume throughout the paper:

(F) The distribution F' has a continuous, strictly positive density f, is unimodal and

symmetric around its median med(F’).

The following proposition shows that EIF(z, med,; X) is not a consistent estimator for
IF(xz, med; F'). The empirical influence function evaluated in x converges in distribution to
an exponential distribution with mean IF(z, med; F) for z > 0. For z < 0 we obtain a
negative exponential and for z = 0 a double exponential limit distribution. All proofs can

be found in the Appendix.

Proposition 1. The empirical influence function of the median EIF(x,med,; X), where
each observation from X = {xi,...,xz,} is distributed according to F, converges in law

to a distribution with density
2f(med(F)) exp (2uf(med(F))) I(u < 0) if x < med(F)
f(med(F))exp (—2|u| f(med(F))) if x = med(F) (2.2)
2f(med(F)) exp (—2uf(med(F))) I(u >0) if x > med(F).



We will compare this limit behavior of the empirical influence function with that of trimmed

means and M-estimators. The a-trimmed mean T)¢ (with 0 < a < 1/2) is defined as

n—|an|

1
THX)=———— i)
w(X) n—ZLanJi:Lag}lx()

where z(1) < ... < x(,) are the ordered observations. The influence function of this estimator

is given by (see Huber 1981, page 58)

F(z, 7% F) = (F'(a)—med(F))/(1-2a) for z < F1(a)
= (z—med(F))/(1 - 2a) for I (« )§x<F 1(1-a)
= (F!'(1-a)—med(F))/(1—-2a) for F7'(1-a)<

(2.3)
The following proposition shows that the EIF of the a-trimmed mean converges uniformly

and almost surely to the corresponding influence function.

Proposition 2. For any distribution F' satisfying condition (F), and for any 0 < a < 1/2
we have
lim sup |EIF(z,T,; X) — IF(z, T, F)| =0 a.s.

Other popular robust estimators of location are M-estimators 7, ,, which are defined as

the solution of the following equation in %:
> Y(x; —t) =0. (2.4)
i=1

We suppose that

(¥) The function v is odd, non-decreasing, bounded, continuous, and almost everywhere

differentiable with ¢'(0) > 0

These conditions exclude the function 1 (u) = sign(u), which corresponds to the median
estimator. Our main example will be the Huber M-estimator of location defined by v (u) =
max(—b, min(u, b)) where b is a positive tuning parameter. The influence function of an
M-estimator T}, at the model distribution F'is given by (Hampel et al 1986, page 103)

Y(x — med(F))

Ep[y/(X — med(F))]
Comparing (2.3) and (2.5) shows that the influence function of the Huber M-estimator equals

IF(z,Ty; F) = (2.5)

the IF of the trimmed mean for b = F'(1 — @) — med(F). Just like for trimmed means,
but opposed to the median, we obtain almost sure convergence for the EIF of (smooth)

M-estimators.



Proposition 3. If the distribution F satisfies (F) and the M-estimator Ty, satisfies (V) then

Lim sup \EIF(x, T, 4; X) — IF(z,Ty; F)| =0 a.s.

3 Reconsidering the Gross-error Sensitivity

The definition of the gross-error sensitivity of 7' at the distribution F' uses the functional

version of the estimator and is given by
(T, F) = sup |IF(z,T; F)|. (3.1)

It is often interpreted as the maximum (standardized) influence that one single outlier can
have on the estimator when the “good” data come from a distribution F. However, this

interpretation corresponds merely with the sample-based quantity
¥(T,, X) = sup |EIF(z, T,,; X)|, (3.2)

where X ~ F| which is a stochastic variable. For a-trimmed means and M-estimators
Propositions 2 and 3 yield that v(7,%, X) and (7}, X) converge almost surely to v*(7*, F')
and v*(Ty, F). For the median however, the following proposition shows that the variable

~v(med,,, X) lacks consistency.

Proposition 4. For every distribution satisfying (F), we have
limsup Pp(y(med,, X) < u) = (1 — exp(—2uf(med(F))))*  for u > 0. (3.3)
A sample-based definition of gross-error sensitivity could be given by

limsup Loss(vy(T,, X)) (3.4)

n

where the loss function measures the deviation of the random variable (7;,, X ) from the tar-
get zero. In Table 1 we compare the sample-based gross-error sensitivity (3.4) of the median
with the 10%-, 25%- and 45%-trimmed mean. We used the mean, median, expected squared
value, and 95%-quantile of the distribution of (7}, X) to summarize the loss of robustness.
The distribution F' was taken to be the standard normal. We see that the sample-based
measures of gross-error sensitivity for 25%- and 45%-trimmed means are smaller than those

for the median, and this for all loss functions considered here. Even the 10%-trimmed mean



Table 1: Sample-based gross-error sensitivity limsup,, Loss(y(7,, X)), where X follows the

standard normal, for the median and several trimmed means .

Loss function L(Y)
Estimator ElY| med|Y| EY? F,'(0.95)
median 1.880 1.539  5.498 4.607
7 o =0.10 1.602 1.602  2.566 1.602
a=0.25 1.349 1.349 1.820 1.349
a =045 1.257  1.257 1.579 1.257
a1 0.50 1.253 1.253 1.571 1.253

performs quite well w.r.t. the median. These observations lead us to reconsider the most B-
robustness property of the median. This property (Hampel et al 1986, page 133; Rousseeuw
1982) says that the median minimizes v*(7, F) within the class of translation equivariant
location estimators. Working with a sample-based measure of gross-error sensitivity reveals
however that this doesn’t imply that the median is also most robust with respect to single
outliers. If we focus on the mean absolute deviation as loss function in (3.4), we obtain a

new measure Of robustness:
V(T F) = limsup B[|y(T, X)|]. (3.5)

As we can see from the first column of Table 1, there are many other estimators having a
lower (7T, F') than the median.
A strange discontinuity is observed from the last line of Table 1 and can be derived from
equations (2.1) and (2.3).
lim (T F) =1/(2f(med(F))) = v*(med, F) < (med, F).

at0.5

We come close to the lowest possible value for 4(7%, F') when the trimming proportion tends
to 50%. For the limiting estimator (the median) however, (7°?, F) lifts up. One should not
forget that although 7 is a sample-based measure, it is still an asymptotic measure. At finite
samples the median behaves essentially like a trimmed mean with « almost equal to 1/2. The
question which arises now is whether the first or the last row of Table 1 describes better the

distribution of y(med,,, X) for finite values of n. In the next Section it is shown by means of
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Figure 1: Boxplots of 1000 numbers generated from EIF(x,T,; X), where X follows a stan-
dard normal distribution and n = 30. We considered the median (M), the 25%-trimmed
mean (T), and the corresponding Huber M-estimator (H) for x = 5,—2, and 0.

a simulation study that the asymptotic results obtained for the median estimator correspond
well with its finite-sample behavior. The rather large value of 4(med, F') is therefore not a

pure theoretical phenomenon, it is also observed in practice.

4 Simulations

We performed a simulation study to confirm our theoretical findings. First we generated 1000
samples X of size n = 30 from a standard normal distribution ¢ and computed EIF (x, T},; X)
for each of these samples. Boxplots of these 1000 numbers are pictured in Figure 1 for the me-
dian, the 25%-trimmed mean, and the Huber M-estimator with b = ®1(0.75). We repeated
this for three values of z. The exponential form of the limit distributions of EIF(x, med,; X)
appears clearly. The distributions of the EIF for the trimmed mean and the Huber M-
estimator are much less dispersed and have only a slightly different median.

A similar simulation was done to investigate the distribution of (7}, X) at finite samples.
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Figure 2: Boxplots of 1000 numbers generated from ~v(T,,, X), where X follows a standard
normal distribution and n = 100 and 101. The considered estimators are the median (M),

the 25%-trimmed mean (T), and the corresponding Huber M-estimator (H).

For the odd sample size n = 101 we see from Figure 2 that boxplots for the trimmed mean
and the Huber M-estimator are less dispersed and have smaller medians than the boxplot for
the sample median. In this case, we may conclude that the sample median is less resistant
to single outliers than the other two estimators. Notice the difference between the odd and
the even sample size n = 100 (This is another odd property of the median, cfr. Cabrera et
al 1994).

Finally we looked at the distribution of supy: |Tpim(X’') — T,,(X)|, where X’ is obtained
from X by adding a small number m of arbitrary observations. We simulated this distribution
for 2%, respectively 5% of contamination. The results are shown in Figure 3. (We only
pictured the results for the 25%-trimmed median. The Huber M-estimator behaves similarly.)
The difference between n odd and n even becomes much smaller. For 5 outliers added to
100 good observations, we see again that the distribution of supy |T54m (X') — T, (X)| for
the trimmed mean has a lower median and is less dispersed than for the sample median.

Our results for single outliers seem thus to remain valid for small amounts of outliers. These
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Figure 3: Boxplots of 1000 numbers generated from supx: |Tnim(X') — T(X)|, where X
follows a standard normal distribution and X’ is obtained from X by adding m arbitrary

observations. We considered m = 2 and 5, n = 100 and 101, and as estimators the median

(M) and the 25%-trimmed mean (T).

findings are not in contradiction with the famous minimax bias property of the median
(Huber 1981, page 75). The latter is an optimality property for the functional version of
the median. This simulation experiment dealt with the (finite-)sample median. Moreover,
we see from Figure 1 that the median of the distibution of the bias of the sample median
under a specified contaminating distribution is still consistently smaller than for the other

considered estimators.

5 Conclusions

This paper shows that the empirical influence functions of trimmed means and M-estimators
of location converge almost surely to the theoretical influence function, while the EIF of the
median is not a consistent estimator for the corresponding IF. This result resembles the

lack of consistency of the jackknife variance estimator for the median. Another example of



a non-convergent EIF is given by Christmann et al (1994).

By introducing a sample-based measure of gross-error sensitivity, we showed that the
median is no longer most robust with respect to single outliers, although it minimizes the
functional-based gross-error sensitivity. Simulations have shown that this is a real phenom-
enon, and not just a theoretical artefact. Heavily trimmed means appear to be more robust
to single outliers, while they achieve at the same time a higher efficiency at normal models.
Other arguments in favor of using heavily trimmed means are given by Croux (1996) and
Oosterhoft (1994).

The influence function needs to be quite carefully interpreted . If we have one outlier
out of n + 1 observations, the percentage of contamination tends to zero at the rate n™!.
Suppose now that we put a total of |en| 4+ 1 identical observations at position = (one can

argue whether this is a realistic situation), implying that the number of contaminants is

linear in the number of observations. The following equality holds (at least for consistent

estimators) :
o T((1 - SR F + AL - T(F)
lslﬁ)lnh_)rlolo 6:;{1 =1F(z,T;F) a.s. (5.1)

It follows from Proposition 1 that it is not always allowed to change the order of the two limits
in (5.1). Equation (5.1) shows that the influence function IF(z, T’; F') needs to be considered
as an approximation for the standardized influence of a proportion of € % of outliers at
the same position z, with £ very small and n huge, but the total number of outliers still
fairly large and certainly different from 1. Indeed, for the sample mean the percentage of
contamination € should tend at a slower rate than 1/n to zero to obtain coherency between
the influence function and its empirical counterpart. For smoother estimators however, we

can still take € ~ 1/n.

6 Appendix

Proof of Proposition 1: Denote h = |n/2| + 1. First suppose that n is odd. We have
med,,(X) = x(,). Adding the observation z gives rise to a shift

(T(hy1) —xmy)/2  for x> x(n41)
med,+1(X U {z}) — med,(X) ={ (z —z())/2 for zg11) >z > 20 1) (6.1)
(T(h—1) —2m))/2 for zp_1y) >

9



The theory of spacings provides the following fact (David 1981 page 257):
(S) Consider the random variables U; = f(med(F))n(Xpi1)y — Xpy), Uz =
2f(med(F))y/n(Xp) — med(F)), and Us = f(med(F))n(Xn) — Xn-1)), where
h/n — 0.5. The vector (Uy, Us, Us) converges in law to (Z1, Z, Z3), where Z; and Z3
have an exponential distribution with mean 1 and Z, has a standard normal distri-

bution. Furthermore, 7, Z; and Z3 are independent.

Since both X1y and X(;,—1) converge almost surely to med(F') (Jureckova and Sen 1996,
page 94), the result follows from (S) for z # 0. For x = 0 we combine (S) with the fact that
both P(x > X(441)) and P(z < X(,—1)) tend to 1/2.

The proof for n even is analogous. There we have

(n)y — T(h-1))/2 for x>z
med”+1(X U {.’17}) - medn(X) = (2.'13 — l’ (h) — .’L‘(h )/2 for .’Ii(h) >x > x(h—l) (62)
(Zp-1) = 2(w)/2 for z¢-1) > .

O

Proof of Proposition 2: Denote r = |an] and take io(z) such that X)) < z <
Xio(z)+1)- Suppose 7 = [a(n + 1)] (The case r + 1 = [a(n + 1)] can be proved in the same
way.) We can verify that

s o X(r) — mzz S X io(z) <r
BIFG Ty = | e e <o) Smer
%X(nﬂ,q«) — WM Yot X (i) n—r <iy(z)
(6.3)
Since X,y converges almost surely to F''(a), X(,—) a.s. to F1(1 — a), and
n+1 S0 X . [l tdF(t) _ med(F) s,
n+1—2r n-—2r (1 —2a)? 1 -2«
(cfr. Jureckova and Sen 1996, page 95), it follows from (6.3) and (2.3) that
Jim sup [EIF (z, 777 X) — IF(2, T% F)| < JEEO‘ o nf;r_l — _12a) 2| =0
almost surely. O

Proof of Proposition 8: Denote t,(x) = Tpi1,6(X U{z}),t, = T,(X) and A, (t) =
S Y(X; — t). First we show that

sup |tn(x) — t,| = 0 a.s. (6.4)
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Indeed, if (6.4) does not hold, there exists an €y and subsequences {n;} and {x;} such
that |t,, (xx) — tn,| > 0. By taking a further subsequence we may assume w.l.o.g. that

tn, (zk) > t,, + €o. Since the functions )\, are non-increasing we have

)\nk (tnk (xk)) < )\nk (tnk + 50)' (65)

>
S
—~
~
S
—~
&
SN—
SN—
I

D (X = tn(2) + (2 — ta(2)) — Y(z — ta(x)) = —th(z — ta(z))  (6.6)

i=1
and the boundedness of ¥ we conclude

Ay (b (1))

limsup —*
k Ny

= 0. (6.7)
On the other hand, it follows from (6.5), the law of large numbers and the fact that ¢, is a
consistent estimator of med(F") (cfr. Huber, page 48) that
Any (tn, _ (X — b, —
limsup Ic( k(xk)) < limsup 2z ( k 60)

= Ep[p(X —med(F) — &)] < Ep[¢p(X —med(F))] = 0.

(6.8)

(Here, we used the condition that 1 is strictly increasing at the origin.) Since (6.8) contra-
dicts (6.7), (6.4) should be valid.
A Taylor development of A\, around ¢, yields

An(tn(Z)) = An(tn) + AL () (tn(2) — ) + o(tn(x) — ).

Since A, (t,) = 0, we have

An(tn(T))
(An(tn) +0(1))/(n +1)°

Due to (6.4), (6.6), the law of large numbers applied to X, (t,)/(n+1) = — >, ¥'(X; —
tn)/(n + 1), and the fact that ¢, tends to med(F') almost surely, we conclude

Y(x — med(F))
Ep[y/(X — med(F))]

EIF (, Ty, X) = (n+ 1) (tn(2) — t,) =

limsup [EIF (2, Tny; X) — | =0.

Proof of Proposition 4: Take u > 0. From (6.1) it follows that, for n odd,
Pr(sup |[EIF(x, med,; X)| < u) = Pg ((n + 1) max(Xni1) — Xwy), Xy — Xp-1y) < 2u) :

11



Using (S) of Proposition 2 we obtain

lim " Pr(sup |EIF(z, med,; X)| < u) = P(max(Y7,Ys) < 2f(med(F))u), (6.9)

n—00,n O

where Y; and Y5 are two independent exponential variables with mean 1. On the other hand,

(6.2) yields

lim  Pg(sup |[EIF(z, med,; X)| <u) = P(Y; < 2f(med(F))u). (6.10)

n—oo,n even

Equations (6.9) and (6.10) yield the stated result (3.3). O
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