High-Mobility Group-IV Materials and Devices, Date: 2004/04/13 - 2004/04/15, Location: Leuven Belgium
HIGH-MOBILITY GROUP-IV MATERIALS AND DEVICES
Author:
Keywords:
Science & Technology, Technology, Physical Sciences, Engineering, Electrical & Electronic, Materials Science, Ceramics, Physics, Condensed Matter, Engineering, Materials Science, Physics, DIFFUSION, SUPERLATTICES
Abstract:
Solid phase epitaxial regrowth (SPER) has been proven to be highly advantageous for ultra shallow junction formation in advanced technologies. Application of SPER to strained Si/SiGe structures raises the concern that the Ge may out diffuse during the implantation and/or anneal steps and thus reduce the strain in the top silicon layer. In the present studies we expose 8-30 nm strained silicon layers grown on thin relaxed SiGe-buffers, to implant conditions and anneal cycles, characteristic for formation of the junctions by solid phase epitaxial regrowth and conventional spike activation. The resulting Ge-redistribution is measured using SIMS. Based on the outdiffused Ge-profiles the Ge-diffusion coefficient has been determined in the temperature range of 800-1100C from which an activation energy of ∼ 3.6 eV can be deduced. Up to 1050 C, 10 min, even a 30 nm strained film remains highly stable and shows only very moderate outdiffusion. We also have observed a far more efficient, athermal Ge-redistribution process linked to the implantation step itself. This was studied by analysing the Ge-redistribution following an Asimplant (2-15 keV, 5 1014-3 1015 at/cm2). It is shown that the energy of the implant species (or more specifically the position of the damage distribution function relative to the Ge-edge) plays a determining factor with respect to the Ge-migration. For implants whereby the damage distribution overlaps with the Ge-edge, a very efficient transport of the Ge is observed, even prior to any anneal cycle. The migration is entirely correlated with the collision cascade and the resulting (forward!) Ge-recoil distribution. The scaling with dose for a given energy links the observed Ge-profile with a broadening mechanism related to the number of atom displacements induced in the sample within the vicinity of the Si-SiGe-transition.