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Summary

In the first part of this dissertation, we propose a robust estimation method
for penalized regression splines based on S-estimators that can be used in
the presence of outliers in the response variable. Second we study and
propose a robust version of the model selection criterion AIC, Akaike’s in-
formation criterion, for regression models where S- and MM-estimators are
used for estimation. The last part of this dissertation presents the robust
S-estimation method and a robust version of AIC for use in linear mixed
models and in particular for additive semiparametric regression models.

Penalized regression splines are one of the popular methods for smooth-
ing noisy data. The estimation methods used for fitting such a penalized
regression spline model are usually based on least squares methods, which
are known to be sensitive to outlying observations. The main objective of
the second chapter is to extend the estimation method for penalized regres-
sion splines to that of S-estimation. We used the Tukey’s biweight family
of loss functions to estimate the S-estimates. We propose a computation-
ally fast procedure for estimating penalized regression spline models via
S-estimators. Simulated data and real data examples are used to illustrate
the effectiveness of the procedure. The results of these examples indicate
that S-estimates for penalized regression splines are more appropriate for
data with outliers.

The third chapter is about robust model selection strategies for regres-
sion models. Model selection is a key component in any statistical analysis.
We derive a model selection strategy in the style of Akaike’s information
criterion (AIC) based on S- and MM-estimators. We compare different
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vi Summary

robust AIC methods based on M-, S- and MM- estimators to the classical
AIC method, that uses maximum likelihood estimators. In a simulation
study we observe that the proposed AIC with S- and MM- estimators se-
lects more appropriate models for data sets with a large contamination
level of outliers in the response variables.

In the fourth chapter we study model selection strategies for semipara-
metric additive models fit with penalized regression splines. This estima-
tion method is attractive because of its link to mixed models. We work
specifically with outlier robust versions. In the context of mixed models
there exist two different forms of AIC. The marginal AIC (MAIC) is used
for selecting covariates in the model, and is based on the marginal likeli-
hood. The conditional AIC (CAIC) is based on the conditional likelihood
given the random effects. Our proposal leads to robust versions of the
MAIC and CAIC that are based on S-estimators. We consider the robust-
ness with respect to the outliers in the individual level and in the cluster
level of the variables in the mixed models. Simulated data and real data
examples are used to illustrate the effectiveness of the proposed method.

We discuss the computational issues using R software in the fifth chap-
ter. We present and briefly illustrate the R-code for all statistical methods
which we used in this dissertation. Finally, we discuss some general con-
clusions and prospectives for future research in the last chapter.
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Chapter 1

Introduction

In the old days statistics was used by governments to keep record of births,
deaths, population sizes etc. for administrative purpose and the scope was
limited. The utility of statistics as a discipline has increased as the years
went by. Nowadays statistical methods and techniques are used in data
collection, in the presentation, the organization and the analysis and inter-
pretations of data in many fields such as agriculture, economics, sociology,
medicine, business management, etc, for different purposes.

In this dissertation we study a combination of three main topics which
are of considerable interest in statistical modeling in different fields. These
three topics are robust estimation methods, semiparametric regression
models and Akaike’s information criterion (AIC) for model selection. In
this chapter, we present the definition, properties and some literature re-
view of the statistical models, estimation methods and the model selection
criterion AIC for regression models and for linear mixed models. Also
we define robust estimation methods and their properties for data with
outliers.

1.1 Linear regression models

Linear regression is a statistical modeling technique that relates the change
in one variable to other variables. Linear regression models are used in

1



2 Chapter 1 - Introduction

many application in real life. For example, a modeler might want to relate
the weights of individuals to their heights using a linear regression model.
A simple linear regression line has an equation of the form Y = α+βX +ε,
where X is the explanatory variable and Y is the dependent variable. The
slope of the line is β, α is the intercept, and ε is an error term.

Identifying a linear regression model requires first determining the de-
pendent variable Y and the explanatory variables X1, . . . , Xp that are to
be included in the model. Coefficients are traditionally estimated by using
ordinary least squares (OLS). This method calculates the best-fitting line
for the observed data by minimizing the sum of the squares of the vertical
deviations from each data point to the fitted regression line.

Before attempting to fit a linear model to observed data, a modeler
should first determine whether or not there is a relationship between the
variables of interest. A scatter plot can be a helpful tool in determining
the kind of relationship between two variables.

If the association between the proposed explanatory and dependent
variables appears not linear, then fitting a linear regression model to the
data probably will not provide a useful model. In this case non linear
regression models might be useful to fit the data.

Once a regression model has been fit to the data, one can investigate
the validity of the modeling assumptions by examining the residuals (that
is, the deviations from the fitted line to the observed values). Plotting the
residuals against the explanatory variables reveals possible non-linear rela-
tionships among the variables and the residual plot might indicate the pres-
ence of outliers. For the situation of linear regression models where outliers
might be present, we derive in Chapter 3 a robust version of Akaike’s in-
formation criterion (AIC) for variable selection (see also Section 1.5).

1.2 Linear mixed models

In many applications in different fields, we need to use one of a collection
of models for correlated data structures, for example, multivariate ob-
servations, clustered data, repeated measurements, longitudinal data and
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spatially correlated data. Often random effects are used to describe the
correlation structure in clustered data, repeated measurements and longi-
tudinal data. Models with both fixed and random effects are called mixed
models.

1.2.1 Notation in mixed models

The general form of a linear mixed model for the ith subject (i = 1, . . . , n)
is given as follows,

Yi = Xiβ +
r∑

j=1

Zijuij + εi; uij ∼ N(0, Gj), εi ∼ N(0, Ri), (1.1)

where the vector Yi has length mi, Xi and Zij are, respectively, a mi × p

design matrix and a mi × qj design matrix of fixed and random effects. β

is a p-vector of fixed effects and uij are the qj-vectors of random effects.
The variance matrix Gj is a qj × qj matrix and Ri is a mi ×mi matrix.
We assume that the random effects {uij ; i = 1, . . . , n, j = 1, . . . , r} and
the set of error terms {ε1, . . . , εn} are independent. In matrix notation,
Y = Xβ + Zu + ε. Here Y = (Y1, . . . , Yn)t has length N =

∑n
i=1 mi, X =

(Xt
1, . . . , X

t
n)t is a N × p design matrix of fixed effects, Z is a N × q block

diagonal design matrix of random effects, q =
∑r

j=1 qj , u = (ut
1, . . . , u

t
r)

t

is a q-vector of random effects, R = diag(R1, . . . , Rn) is a N × N matrix
and G = diag(G1, . . . , Gr) is a q × q block diagonal matrix.

1.2.2 The marginal likelihood for a mixed model

Consider the marginal model Y ∼ N(Xβ, V ), where V = (ZtGZ + R).
The framework of mixed models suggests the use of maximum likelihood
estimation of β and V by minimizing the marginal log-likelihood (leaving
out constants),

m`(β, V |Y ) = −1
2

log |V | − 1
2
(Y −Xβ)tV −1(Y −Xβ). (1.2)

This likelihood approach is computationally convenient and software al-
ready exists for longitudinal, hierarchical or other dependent data.
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1.2.3 The conditional likelihood for a mixed model

The conditional distribution of Y |u ∼ N(Xβ + Zu, R) corresponding to
the mixed model representation and the conditional log-likelihood (leaving
out constants),

c`(Y |β, u, R) = −1
2

log |R| − 1
2
(Y −Xβ −Zu)tR−1(Y −Xβ −Zu). (1.3)

The conditional likelihood of Y |u has a mean that depends on u. The
estimators for β, u and for the variance components that are contained in
the matrix R, are obtained by maximizing the conditional likelihood. We
study robust model selection in linear mixed models in Chapter 4.

1.3 Robust estimation methods

We consider the regression model

Yi = θt
0Xi + ui, i = 1, . . . , n, (1.4)

where the response variables Yi ∈ R, the covariate vector Xi ∈ Rp with a
corresponding coefficient vector θ0 ∈ Rp and the ui are random errors in-
dependent from the explanatory variable Xi, with mean zero and constant
variance σ2. In the case that outliers are present in the data, only the
majority of the data follows the above model (1.4). Extreme observations
might occur in both the explanatory variables and the response. Model
selection investigates the inclusion or exclusion of components of the co-
variate vector X. To handle this problem of outliers, in the model fitting
procedure there exist several robust estimation methods. We give a brief
overview of some of the robust estimators in this section, which are used
in Chapters 2, 3 and 4.

1.3.1 M-estimators

A general M-estimator (Huber, 1964) is defined as the minimum with re-
spect to θ of the objective function

∑n
i=1 ρ(Yi|xi, θ), for a given function
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ρ that has the properties of being even, non-decreasing in [0,∞) and with
ρ(0) = 0. Equivalently, when the response values Y1, . . . , Yn are indepen-
dent, the M-estimator for θ solves the equation

n∑

i=1

ψ(Yi|xi, θ) = 0 (1.5)

where ψ(y|x, θ) = ∂ρ(y|x,θ)
∂θ . Intuitively, to take care of outliers which result

in large residuals when OLS estimation would be used, the function ρ(·)
should increase at a slower rate than t2, particularly for large residuals. A
common choice for ρ is given by Huber’s family with an unbounded loss
function

ρc(t) =

{
t2 if |t| ≤ c

2 c |t| − c2 if |t| > c ,
(1.6)

where c > 0 is a tuning constant that can be thought of as a threshold value
such that observations with residuals larger than c have a reduced effect
in the estimating equation (1.5). The plot of Huber’s loss function (1.6) is
given in Figure 1.1. A table with different values of c is given in Maronna
et al. (2006, page 27), see Huber (2004) and Hampel et al. (1986) for
details. A typical choice for c is 1.345 σ̂m, where σ̂m is the median absolute
deviation of the residuals. The formula for median absolute deviation
(MAD) is MAD(x1, . . . , xn) = 1.4826median{|xi−median(x1, . . . , xn)|, i =
1, . . . , n}, where 1/Φ−1(3/4) = 1.4826. The 95% asymptotic efficiency
on the standard normal distribution is obtained with the constant 1.345.
The M-estimator is computed with ρ(yi|xi, θ) = ρc

(
yi−θtxi

σ̂m

)
. In practice,

iteration is used between estimation of θ and estimation of the standard
deviation σ until convergence.

1.3.2 S-estimators

S-estimators for linear regression were introduced by Rousseeuw and Yohai
(1984) as an alternative to M-estimators that do not suffer that much
from leverage points (which are outliers in the covariates) and at the same
time have a high breakdown point and do not require an auxiliary scale
estimator.
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Figure 1.1: Plot of Huber’s loss function

Let G0 and F0 be the cumulative distribution functions of Xi and ui

respectively. The cumulative distribution of (Yi, Xi) under model (1.4) is
then given by H0(y, x) = G0(x)F0(y − θt

0x). In the presence of outliers,
we make the assumption that the cumulative distribution function H of
the data belongs to a contamination neighborhood of H0 of size ε0. More
precisely,

H ∈ Hε0 = {(1− ε)H0 + εH∗; ε ∈ [0, ε0]},

where H∗ is an arbitrary cumulative distribution function and ε0 < 0.5.

The loss function ρ0 is a function that is even, continuously differen-
tiable, non-decreasing on [0,∞), satisfies that ρ0(0) = 0 and is bounded
from above by 1, that is, supu∈R ρ0(u) = 1. We define b = EF0 [ρ0(u)] to
ensure consistency of the scale estimator under the central model F0 and
assume that ε0 < b < 1−ε0. The notation EF0 means that the expectation
is computed with respect to F0.

First we implicitly define the scale function σ̂n(θ) by that function of
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θ that satisfies the equation

1
n

n∑

i=1

ρ0

(
Yi − θtxi

σ̂n(θ)

)
= b,

with ρ(yi|xi, θ) = ρ0

(
yi−θtxi

σ̂n(θ)

)
. The S-estimator θ̂s minimizes the scale

function, θ̂s = argminθ∈Rp σ̂n(θ), and the scale estimator itself is σ̂s =
σ̂n(θ̂s).

A commonly used family of loss functions ρ0 is given by Tukey’s bi-
square family (Beaton and Tukey, 1974)

ρd(u) =

{
3 (u/d)2 − 3 (u/d)4 + (u/d)6 if |u| ≤ d ,

1 if |u| > d .
(1.7)

The plot of Tukey’s bisquare loss function (1.7) is given in Figure 1.2.
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R
ho

(u
)
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Figure 1.2: Plot of Tukey’s bisquare loss function

The choice d = 1.5476 yields b = EΦ [ρd (Z)] = 0.5. The associated S-
regression estimator has the maximal asymptotic breakdown point of 50%
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(Rousseeuw and Yohai, 1984). Estimators with 30% breakdown point are
gotten when d = 2.5608, resulting in a higher efficiency.

1.3.3 MM-estimators

A further step in robust estimation uses the S-scale estimator in an M-
estimating equation. Let ρ1 : R→ R+ be a loss function such that ρ1(u) ≤
ρ0(u) for all u ∈ R and supu ρ1(u) = supu ρ0(u). The MM-regression
estimator θ̂mm is defined as the global minimum of f : Rp → R+, with

f(θ) =
1
n

n∑

i=1

ρ1

(
Yi − θtxi

σ̂s

)
.

We can write the MM-estimator as follows

θ̂mm = argmin
‖θ‖∈Rp

1
n

n∑

i=1

ρ1

(
Yi − θtxi

σ̂s

)
,

The MM-variance estimator is taken to be the S-scale estimator σ̂s. In
practice, often the choice ρ1 is a re-scaled version of ρ0 (Tukey’s bi-square
family loss function). Let ρ0(u) = ρd(u/d0) and ρ1(u) = ρd(u/d1) and
to get ρ1(u) ≤ ρ0(u) we must have d1 ≥ d0, the larger d1 gives a higher
efficiency at the normal distribution.

We illustrate the importance of the robust estimators in the presence
of outliers in the data by some real data and by a simulated data exam-
ple. We have used Hofstedt’s highway data from the R library alr3 as
data(highway) (see also Weisberg, 2005). There are 39 observations on
several highway related measurements in this dataset. The response vari-
able is the accident rate per million vehicle miles in the year 1973 and
there are 11 potential explanatory variables. The explanatory variable is
the truck volume as a percentage of the total volume.



1.3. Robust estimation methods 9
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Figure 1.3: Fitted values (a) Highway data and (b) Simulated data with
y-outliers (solid triangle) and x-outliers (solid square). Fitted curves from
least squares estimation (solid line), M-estimation (dot-dashed), a more
relevant fit from S-estimation (dotted line) and MM-estimation (dashed).

Figure 1.3 shows clearly the need of robust estimation methods in case
outliers are present. Outliers in y are plotted as triangles, while outliers
in the explanatory variable are plotted as squares. Non-outlying obser-
vations are represented by solid circles. Panel (a) for the highway data
shows the effect of outliers on the response variable where robust S- and
MM-estimation methods result in more relevant fits to the data. The M-
estimator behaves here more in line with the least squares estimator. In
the simulated example in panel (b) we have generated 25% outliers in y

and 15% outliers on x. There are outliers on both the response variable
and the explanatory variable. Also here, S- and MM-estimation leads to a
good fit.

1.3.4 S-estimators for linear mixed models

In Maronna (1976), the robust estimators of the multivariate mean and co-
variance are built from weighted score functions. Their breakdown point
becomes smaller as the dimension increases. In the linear mixed model, the
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dimension can be large and it is important to consider high-breakdown esti-
mators. Copt and Victoria-Feser (2006) propose a constrained S-estimator
for the multivariate mean and a constrained covariance estimator for mixed
linear models as in (1.1). Consider the marginal log-likelihood as given in
(1.2). The S-estimator of the multivariate mean and covariance is defined
as the solution for β and V that minimizes det(V ) = |V | subject to

1
n

n∑

i=1

ρ
(√

(Yi −Xiβ)tV −1(Yi −Xiβ)
)

= b0, (1.8)

where ρ(u) is a even function with the properties of being non-decreasing
and being a bounded function, as given by Rousseeuw and Yohai (1984)
and b0 is a parameter chosen to determine the breakdown point. Generally
b0 is defined by b0 = E(ρ(

√
U)), where U is a Chi-squared distribution with

p degrees of freedom, p is number of parameters in the model. The Tukey
biweight loss function is a usual choice in the univariate case. Rocke (1996)
proposed a translated Tukey biweight function for multivariate data that
can control the probability of an estimator giving a null weight to extreme
observations, the latter which is called the asymptotic rejection probability
(ARP). The translated Tukey biweight loss function is given by,

ρ(d; c.M) =





d2

2 , 0 ≤ d ≤ M

ρM≤d≤M+c(d; c,M), M ≤ d ≤ M + c
M2

2 + c(5c+16M)
30 , d > M + c,

(1.9)

with M + c < ∞ and

ρM≤d≤M+c(d; c,M) =
M2

2
− M2(M4 − 5M2c2 + 15c4)

30c4

+d2

(
0.5 +

M4

2c4
− M2

c2

)
+ d3

(
4M

3c2
− 4M3

3c4

)

+d4

(
3M2

2c4
− 1

2c2

)
− 4Md5

5c4
+

d6

6c4
.

The plot of the translated Tukey biweight loss function (1.9) is given in
Figure 1.4.
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Figure 1.4: Plot of the translated Tukey biweight loss function

This translated Tukey biweight ρ function leads to the weight function

u(d; c,M) =





1, 0 ≤ d ≤ M(
1− (

d−M
c

)2
)2

, M ≤ d ≤ M + c

0, d > M + c,

(1.10)

where the constants c and M can be chosen to achieve the desired break-
down point and ARP. Copt and Victoria-Feser (2006) compute the S-
estimator for the parameter estimators for fixed effects and variance com-
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ponents for the marginal model Y ∼ N(Xβ, V ) given by,

β̂ =
(
XtV̂ −1X

)−1
∑n

i=1 u(di)Xt
i V̂

−1
i Yi∑n

i=1 u(di)
, (1.11)

Ŝ0 =

[
1
n

n∑

i=1

u(di)d2
i

]−1

Q−1U, (1.12)

V̂ = ZtĜZ + R̂, (1.13)

where di =
√

(Yi −Xiβ̂)tV̂ −1
i (Yi −Xiβ̂), u(di) = ∂

∂di
ρ(di)/di,

Ŝ0 = (σ̂2
0, . . . , σ̂

2
K0

)t, K0 =
∑q

j=1 Kj , Ĝ = (σ̂2
1, . . . , σ̂

2
K0

)IK0 , R̂ = σ̂2
0In,

Q =
[
Tr

(
V̂ −1zjz

t
j V̂

−1zkz
t
k

)]
j,k=0,...,K0

and U =
[

1
n

∑n
i=1 pu(di)× (Yi −Xiβ̂)tV̂ −1

i zjz
t
j V̂

−1
i (Yi −Xiβ̂)

]
j=0,...,K0

,

here Xi is the ith row of the design matrix X, Vi is the (i, i)th element
of variance matrix V , zj is the jth block matrix of the design matrix Z.
With this procedure, we do not yet obtain predictions for the random
effects. To construct the random effect predictions, we need to consider
the conditional model. Details of the derivation of S-estimators for linear
mixed models are given in Chapter 4.

1.4 Semiparametric regression models

Semiparametric regression models retain the virtues of both parametric
and nonparametric modeling. Ruppert et al. (2003) presents various semi-
parametric regression models, their inference procedures and applications.
Additive penalized regression spline models have found a lot of applica-
tions in the last few years. These models are easy to fit. They allow
a flexible choice of the knots and in addition the smoothing parameter
can be obtained in a data driven way. All this has made them a popular
nonparametric smoothing method.
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1.4.1 Mixed model representation of additive penalized re-

gression splines models

Consider the regression model

Yi =
p∑

j=0

βjXji +
q∑

j=1

mj(Xp+j,i) + εi, i = 1, . . . , n. (1.14)

where X0i,. . . ,Xqi are q + 1 explanatory variables for observation i, mj :
[a, b] → R are unknown but smooth regression functions for each of the
explanatory variables and the random errors εi are independent from the
explanatory variables, with mean zero and a constant variance σ2. We
are interested in estimating the parameters β0, β1, . . . , βp together with
the functions mj(·), j = 1, . . . , q based on a random sample (Yi, Xji), i =
1, . . . , n.

To fix ideas, we focus our presentation on truncated polynomial bases,
but other choices can be used as well. More specifically, we take regression
splines of degree s, Kj inner knots a < κj1 < · · · < κjKj < b and define

mj(x; βj , κj) = βj1x + · · ·+ βjsx
s +

Kj∑

k=1

ujk{max(x− κjk, 0)}s.

Given a sample, this approach transforms the estimation of mj(·) into a
least squares problem. To reduce the influence of the spline coefficients
ujk(k = 1, . . . , Kj), a penalty is introduced. Denote (x−κk)+ = {max(x−
κk, 0)}s. Define the design matrix F = (X, Z) with

X =




x11 . . . xp1 xp+1,1 . . . xs
p+1,1 · · · xq1 . . . xs

q1

x12 . . . xp2 xp+1,2 . . . xs
p+1,2 · · · xq2 . . . xs

q2
...

...
...

...
...

...
x1n . . . xpn xp+1,n . . . xs

p+1,n · · · xqn . . . xs
qn




Z =



(xp+1,1 − κ11)s
+ · · · (xp+1,1 − κ1K1)

s
+ · · · (xq1 − κq1)s

+ · · · (xq1 − κqKq)s
+

...
...

(xp+1,n − κ11)s
+ · · · (xp+1,n − κ1K1)

s
+ · · · (xqn − κq1)s

+ · · · (xqn − κqKq)s
+






14 Chapter 1 - Introduction

Let β = (β0, β1, . . . , βp, βj1, . . . , βjs)t; j = 1, . . . , q, u = (u1, . . . , uq)t with
uj = (uj1, . . . , ujKj )

t. A traditional penalized least squares (PLS) estima-
tor with smoothing parameter λj for mj(·), j = 1, . . . , q is

(β̂, û)PLS = argmin
β,u

[ ‖ Y − F

(
β

u

)
‖2 +

q∑

j=1

λj ‖ uj ‖2
]
.

The penalized least squares estimator of β and u are explicitly obtained
as follows,

(β̂, û)PLS = (F tF + Dλ)−1F tY, (1.15)

where Y = (Y1, . . . , Yn)t, Dλ = diag(0sX , λ11K1 , · · · , λq1Kq), sX is the
number of columns of the design matrix X, sX = p + 1 + s1 + · · ·+ sq, 0s

is a vector of 0 with length s, 1s is a vector of 1 with length s.

1.4.2 Mixed model representation

There exists a convenient connection between penalized splines and mixed
models (Brumback et al., 1999; Ruppert et al., 2003). Model (1.14) is
re-written using the matrix notation

Y = Xβ + Zu + ε (1.16)

where Y is a n × 1 vector of response variables, β is a (p + (q − p)s) × 1
vector of fixed effects, u is a K0×1 vector of random effects, K0 =

∑q
j=1 Kj ,

X and Z are the n × (p + (q − p)s) and n × K0 design matrices for the
fixed and random effects respectively, ε is the error term, a n × 1 vector.
We assume that u and ε are independent and normally distributed as
u ∼ N(0, G), ε ∼ N(0, R) where G = σ2

uIK0 , R = σ2In, u is considered
to be a random variable. The Lagrange multiplier or penalty constant λj

appears in this model as a ratio of the error variance to the random effects
variance: λj = σ2/σ2

uj
.

The estimation of the parameters β and u entails minimizing the pe-
nalized least squares criterion

‖ Y −Xβ − Zu ‖2 +utDλu, (1.17)



1.5. Model selection methods 15

where Dλ is a known K0 × K0 penalty matrix. For a given smoothing
parameter matrix Dλ, the penalized least squares estimators from (1.17)
are (

β̂

û

)
=

(
XtX XtZ

ZtX ZtZ + Dλ

)−1 (
Xt

Zt

)
Y, (1.18)

and the fitted values are Ŷ = Xβ̂ + Zû = HY , where H is the smoothing
matrix given by

H =
(

X Z
)(

XtX XtZ

ZtX ZtZ + Dλ

)−1 (
Xt

Zt

)
. (1.19)

The trace of the smoothing matrix H has a monotone relationship with the
smoothing parameters λ1, · · · , λq, and is often used to compute the gen-
eralized, or an effective, degrees of freedom. The mixed model representa-
tion of the semiparametric regression models is used in model selection in
Chapter 4.

1.5 Model selection methods

Variable selection is fundamental in statistical modeling. In practice, a
number of variables are available to include in an analysis, but many of
them may not be relevant and should be excluded from the final model in
order to increase the accuracy of the estimators and predictors based on
this model.

The variable selection procedures need special care in the presence of
outliers in the data. Since most of the classical procedures are likelihood-
based, alternatives have been developed. Some of the main developments
to make classical model selection procedures for linear models less sensi-
tive to outlying observations are a robust version of Akaike’s information
criterion (AIC Akaike, 1973) based on M-estimators (Ronchetti, 1985).
Other model selection methods based on M-estimators are a robust Cp

(Ronchetti and Staudte, 1994; Sommer and Staudte, 1995) and a robust
version of cross-validation (Ronchetti et al., 1997). A robust way of model
selection using the concept of stochastic complexity is presented in Qian
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and Künsch (1998). Agostinelli (2002) deals with weighted versions of
likelihood estimators and uses this method for model selection. Several
of these model selection methods are described in Maronna et al. (2006,
Sec. 5.12) and Claeskens and Hjort (2008, Ch. 2 and 4).

1.5.1 Akaike’s Information Criterion (AIC)

There are different model selection strategies corresponding to different
aims and uses associated with the selected model. One of the most impor-
tant selection criteria is Akaike’s information criterion (AIC). In practice,
the maximum likelihood estimator θ̂ is computed based on data. Suppose
that y = (y1, . . . , yn) is a vector of observations, generated from a true
underlying distribution with joint density g(.) and that fθ(.) = f(.; θ) is a
family of approximating models with unknown parameter θ. The Akaike
information is defined as −2Ey(Ez[log fθ(z)]), where Ez is the expectation
with regard to the distribution of another realization z. A general formula
of AIC for a candidate model M which contains a parameter vector θ is,

AIC(M) = −2 log likelihood(θ̂) + 2 length(θ) (1.20)

where θ̂ is the maximum likelihood estimator of θ. The AIC value is making
a balance between a good fit and complexity. Akaike’s method aims at
finding models that in a sense have few parameters but nevertheless fit
the data well. The model with the smallest AIC value is selected as a best
choice of the model. In the next section we explain the connection between
AIC and the Kullback-Leibler distance for regression models.

1.5.2 AIC and the Kullback-Leibler distance

Generally, we construct models for observations Y = (Y1, . . . , Yn), contain-
ing the parameters θ = (θ1, . . . , θp)t. In this model the joint density for Y

is defined fjoint(y; θ). The likelihood function can be written as follows,

Ln(θ) = fjoint(y, θ).
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We work with the log-likelihood function `n(θ) = log Ln(θ) instead of with
the likelihood itself. The maximum likelihood estimator of θ is the maxi-
mizer of Ln(θ). That is,

θ̂ = argmax
θ

(Ln(θ)) = argmax
θ

(`n(θ)).

If the data Y are independent and identically distributed, the likelihood
and log-likelihood functions can be written as

Ln(θ) =
n∏

i=1

f(yi; θ) and `n(θ) =
n∑

i=1

f(yi, θ),

in terms of the density f(y; θ) for an individual observation. We should
make a distinction between the model f(y, θ) that we construct for the
data, and the true density g(y) of the data. The true density g(y) is
always unknown and this is called the data-generating density.

There are several ways of measuring closeness of a parametric approx-
imation f(., θ) to the true density g. The Kullback-Leibler (KL) distance,
or discrepancy, is linked to the maximum likelihood method and the gen-
eral definition is

KL(g, f(., θ)) =
∫

g(y) log
g(y)

f(y, θ)
dy. (1.21)

The maximum likelihood estimator θ̂ that maximizes `n(θ) will, un-
der suitable conditions, tend to the minimizer θ0 of the Kullback-Leibler
discrepancy from the true model to the used model f(y; θ). Thus

θ̂ → θ0 = argmin
θ

{KL(g, f(., θ))}.

Here θ0 is the best approximating parameter value. The maximum like-
lihood estimator aims at providing the best approximation to the real
density g inside the parametric set of density functions f(.; θ).

Let us consider the definition of AIC in (1.20). The AIC method is
penalizing maximized log-likelihoods for complexity, but it is not clear
why the penalty factor should take the form of (1.20). The maximum
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likelihood estimator θ̂ minimizes the Kullback-Leibler distance (1.21). We
can re-write the Kullback-Leibler distance as follows,

KL(g, f(., θ̂)) =
∫

g(y){log g(y)− log f(y, θ̂)}dy

=
∫

g(y) log g(y)dy −Rn

where Rn =
∫

g(y) log f(y, θ̂)dy. The first term
∫

g(y) log g(y)dy is the
same across models. Therefore, we need to study only Rn, it is dependent
upon the data via the maximum likelihood estimator θ̂ and also Rn is
a random variable. Let us take the expected value of Rn with respect to
maximum likelihood estimator, under the true density g(.) for the response
variable Yi and denote this as Qn,

Qn = EgRn = Eg

∫
g(y) log f(y, θ̂)dy. (1.22)

We can estimate Qn from the data by

Q̂n = n−1
n∑

i=1

log f(Yi, θ̂) = n−1`n(θ̂). (1.23)

We can define the score function u(y, θ) and information matrix I(y, θ) for
the situation of identically and independent distributed response variables,

u(y, θ) =
∂ log f(y, θ)

∂θ
and I(y, θ) =

∂2 log f(y, θ)
∂θ∂θt

.

We need to define p× p matrices J and K as,

J = EgI(Y, θ) and K = Vargu(Y, θ).

Under various and essentially rather mild regularity conditions, one may
prove that

θ̂ = θ + J−1Un + oP (n−1/2),

where Un = n−1
∑n

i=1 u(Yi, θ). We can write the asymptotic distribution
of the maximum likelihood estimator θ̂ in the following form,

√
n(θ̂ − θ) d−→ J−1U ′ = Np(0, J−1KJ−1). (1.24)
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Let us denote Vn =
√

n(θ̂−θ) and let Zn be the average of the i.i.d zero
mean variables Zi = log f(Yi, θ)−Q0, where Q0 =

∫
g(y) log f(y, θ)dy. We

can get the result as,

Q̂n −Rn = Zn + n−1V t
nJVn + oP (n−1). (1.25)

Consider this as a view of (1.24) and since V t
nJVn →d W = (U ′)tJ−1U ′,

where U ′ ∼ Nq(0,K) and by equation (1.25), this leads to the approxima-
tion,

E(Q̂n −Qn) ≈ p∗/n, where p∗ = EW = Tr(J−1K).

We can write Q̂n − p∗/n = n−1{`n(θ̂) − p∗} as the bias-corrected version
of the estimator Q̂n. Note that, if the model is correct, g(y) = f(y, θ),
then J = K, and p∗ = length(θ). Taking p∗ = p, leads to the AIC formula
(1.20). For more details and proofs, see Section 2.3 in Claeskens and Hjort
(2008). This criterion is called as the TIC, as proposed in Takeuchi (1976)
and is considered to be an AIC-type of model selection in the literature.

1.6 Marginal AIC for mixed models

Variable selection for the additive semiparametric models is challenging
since it includes the selection of variables in the nonparametric component
as well as the identification of variables in the parametric component. This
will increase the computational efforts.

When writing the additive penalized regression spline model in its rep-
resentation of a linear mixed model, we can use the variable selection
methods for the corresponding linear mixed model. An AIC based on
the marginal likelihood is generally used in linear mixed models (marginal
AIC) and returned by standard statistical software.

Using the marginal likelihood (1.2) from the marginal model Y ∼
N(Xβ, V )

mAIC = −2m`(β̂, V̂ |Y ) + 2 (pX + v + 1)

where pX is the number of columns of X, v + 1 is the number of variance
components in (1.16) and (β̂, V̂ ) are the marginal maximum likelihood
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estimates based on maximizing (1.2). This is appropriate when the interest
is in the fixed effects in a mixed model context.

1.7 Conditional AIC for mixed models

The paper by Vaida and Blanchard (2005) focuses on model selection for
linear mixed models using the conditional Akaike information criterion and
shows that the marginal AIC (Akaike, 1973) is not appropriate for condi-
tional inference when both the fixed and the random parts of linear mixed
models are of interest. Vaida and Blanchard (2005) propose the conditional
Akaike information and the conditional AIC based on the likelihood for the
conditional model Y |u ∼ N(Xβ + Zu, R). This approach is more appro-
priate when the focus is on the random effects. The penalty term in the
conditional AIC is related to the effective number of parameters of a linear
mixed model proposed by Hodges and Sargent (2001). In semi-parametric
models, such as penalized regression spline models, model selection entails
selecting among the explanatory variables, interactions between them and
the random components. Smooth functions in penalized regression splines
using the linear mixed model representation are parameterized by variance
parameters (λj = σ2/σ2

uj
) and mean parameters (β).

The conditional Akaike information in this setting is defined as,

cAI = −2Ey,u(E
Ỹ |u[log{f(Ỹ |β̂(y), û(y))}])

where g(Y, u) = gY |u(Y |u)gu(u) is the true joint distribution of Y and u

and Ỹ is a random variable with the same distribution as Y , though inde-
pendent from Y . Assume that the variance components are known. Vaida
and Blanchard (2005) show that an asymptotically unbiased estimator of
cAI is their conditional AIC using the hat matrix H as given in (1.19),

cAIC = −2 logY |u f(Y | β̂, û, R) + 2(Tr(H) + 1) (1.26)

where logY |u f(Y | β̂, û, R) is the conditional log-likelihood for Y , condi-
tioning on u as given in (1.3). Vaida and Blanchard (2005) considered the
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case of a known variance component R and computed the cAIC in (1.26)
by using

logY |u f(Y | β̂, û, R) = −n

2
log(2π)− n

2
log(|R|)

−1
2
(Y −Xβ̂ − Zû)tR−1(Y −Xβ̂ − Zû).

This conditional log-likelihood is computed at the estimated quantities
(β̂, û) based on maximum likelihood or restricted maximum likelihood es-
timation. The penalty includes the trace of smoothing matrix H, project-
ing Y onto Ŷ = Xβ̂ + Zû. The effective degrees of freedom Tr(H) lies
between those of a linear model without random effects u and those of a
linear model with fixed effects u as noted in Vaida and Blanchard (2005).

Liang et al. (2008) have proposed a corrected conditional AIC that ac-
counts for the estimation of the variance components. Instead of 2(Tr(H)+
1) they used as a penalty term 2(Tr(∂Ŷ /∂Y )+1). Greven and Kneib (2010)
study the theoretical properties of the corrected conditional AIC and they
provide a computationally feasible penalty term using maximum likelihood
or restricted maximum likelihood estimators.

We extend this model selection on both the fixed and the random effects
in the linear mixed models to be used with S-estimators, in particular we
derive the appropriate penalty terms in Chapter 4.





Chapter 2

S-Estimation for penalized

regression splines

This chapter is based on the following publication:
Tharmaratnam, K., Claeskens, G., Croux, C. and Salibian-Barrera, M.
(2010). S-estimation for penalized regression splines. Journal of Compu-
tational and Graphical Statistics, 19(3), 609-625.

Abstract

This chapter is about S-estimation for penalized regression splines. Pe-
nalized regression splines are one of the currently most used methods for
smoothing noisy data. The estimation method used for fitting such a pe-
nalized regression spline model is mostly based on least squares methods,
which are known to be sensitive to outlying observations. In real world ap-
plications, outliers are quite commonly observed. There are several robust
estimation methods taking outlying observations into account. We define
and study S-estimators for penalized regression spline models. Hereby we
replace the least squares estimation method for penalized regression splines
by a suitable S-estimation method. By keeping the modeling by means of
splines and by keeping the penalty term, though using S-estimators instead
of least squares estimators, we arrive at an estimation method that is both

23
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robust and flexible enough to capture non-linear trends in the data. Simu-
lated data and a real data example are used to illustrate the effectiveness
of the procedure. Software code (for use with R) is available online.

2.1 Introduction

Penalized regression spline models have found a lot of applications in the
last 10–15 years. Their ease of fitting and flexible choice of knots and
smoothing parameter has made them a popular nonparametric smoothing
method. The use of a combination of regression splines, which have a sub-
stantially smaller number of knots than the sample size, and the use of a
penalty, dates back to at least O’Sullivan (1986) who used a cubic B-spline
basis for estimation in inverse problems. Hybrid splines, which approxi-
mate the smoothing splines (the latter which have knots equal to the data
points and a penalty for complexity) have been studied by Kelly and Rice
(1990) and Besse et al. (1997). Eilers and Marx (1996) proposed the use
of a difference penalty on the spline coefficients. For more explanation and
examples on the class of penalized regression spline models, we refer to
Ruppert et al. (2003). Theoretical aspects of penalized spline regression
fitting are only recently starting to develop. We refer to Hall and Opsomer
(2005) for a white noise representation of the model, Claeskens et al. (2009)
for relating theoretical properties of penalized regression splines to those of
regression splines (without a penalty) and smoothing splines, and Kauer-
mann et al. (2009) for results in generalized penalized spline smoothing
models.

The estimation method used for fitting such penalized regression spline
models minimizes the sum of squared residuals subject to a bound on the
norm of the spline regression coefficients. Alternatively, one can work with
the equivalent penalized minimization problem, that has a closed-form
expression for its solution. It is easy to see that this approach may be highly
sensitive to the presence of a small proportion of atypical observations.
One way to obtain a fit that is more resistant to the effect of atypical
observations in the data is to replace the squared residuals by a slowly
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increasing loss function, as it is done for M-regression estimators (Huber,
1964). Early proposals dealing with M-type robust smoothing go back to
Huber (1979) and Cox (1983) for the particular case of cubic regression
splines. Other papers on the topic include Härdle and Gasser (1984),
Silverman (1985) and Hall and Jones (1990). More recently Oh et al.
(2004, 2007) used the “pseudo data” introduced in Cox (1983) to derive
iterative algorithms for M-type cubic splines, while Lee and Oh (2007)
applied this approach to M-penalized regression splines.

As already noted by Huber (1979) and Cox (1983), a serious difficulty
with replacing the squared residuals by a slower-increasing loss function to
obtain M-type smoothers is that one needs to either know or robustly esti-
mate the residual scale. In principle, one can use simultaneous estimation
of the regression and scale parameters (Huber’s Proposal II (Huber, 1964)),
as in Lee and Oh (2007). Unfortunately, our numerical experiments show
that, as in the simple location/scale and linear regression models, simulta-
neous estimation of the regression coefficients and the residual scale may
not have good robustness properties. In particular, the procedure may be
seriously affected by a relatively small proportion of outliers.

The main purpose of this chapter is to propose robust penalized re-
gression splines that are able to resist the potentially damaging effect of
outliers in the sample, and that do not require the separate estimation of
the residual scale. To achieve these goals we propose to compute penalized
S-regression spline estimators. In the unpenalized case, these estimators
are consistent, asymptotically normal, and have high-breakdown point re-
gardless of the dimension of the vector of regression coefficients (Rousseeuw
and Yohai, 1984).

First we show that the solution to the penalized S-regression spline
problem can be written as the solution of a weighted penalized least squares
problem. This representation naturally leads to an iterative algorithm to
compute these estimators. We also study how to robustly select the penalty
parameter when there may be outliers in the data. This was studied for
M-cubic splines by Cantoni and Ronchetti (2001b). We propose a robust
penalty parameter selection criteria based on generalized cross-validation
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that also borrows from the weighted penalized least squares representation
of the penalized S-regression spline estimator. Extensive simulation studies
show that our algorithm works well in practice and that the resulting
regression function estimator is robust to the presence of outliers in the
data. Furthermore, these estimators compare favorably to the penalized
M-regression splines of Lee and Oh (2007).

The rest of this chapter is organized as follows. Section 2.2 intro-
duces penalized S-regression spline estimators and an algorithm to com-
pute them, while Section 2.3 reports the results of a simulation study that
compared the performance of classical least-squares, penalized M- and S-
regression spline estimators. A data set is analyzed in Section 2.4 and
concluding remarks are included in Section 2.5.

2.2 Penalized S-regression splines

Consider the regression model

Y = m(x) + ε, (2.1)

where m : [a, b] → R is an unknown but smooth regression function and the
random error ε is independent from the explanatory variable x ∈ R, and
has mean zero and constant variance σ2. We are interested in estimating
the function m(x) based on a random sample (Yi, xi), i = 1, . . . , n.

A widely used estimation method for m(x) is to assume that

m(x) =
L∑

j=1

βj fj(x) ,

for some basis f1(x), . . . , fL(x) and coefficients βj ∈ R. To fix ideas, we
focus our presentation on truncated polynomial bases, but other choices
can be used as well. More specifically, we take K inner knots a < κ1 <

· · · < κK < b and define

m(x;β) = β0 + β1x + · · ·+ βpx
p +

K∑

j=1

βp+j (x− κj)
p
+ , (2.2)
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where a+ = max(a, 0) and β = (β0, β1, . . . , βp+K)t. Given a sample
(Y1, x1), . . . , (Yn, xn) this approach transforms the estimation of m(·) into
a least squares problem, where we find the member of the class m(x;β)
that minimizes the sum of squared residuals. To avoid overfitting, we solve
the problem subject to a bound on the size of the spline coefficients:

min
β∈Rp+K+1

n∑

i=1

(Yi −m(xi; β))2 subject to
K∑

j=1

β2
p+j ≤ C,

for some C > 0 as in Ruppert et al. (2003). If we let F (x) = (1, x, . . . , xp, (x−
κ1)

p
+, . . . , (x− κK)p

+)t ∈ Rp+K+1, it is easy to see that the penalized least
squares regression spline estimator β̂ is the minimizer of

n∑

i=1

(
Yi − F (xi)tβ

)2 + λ
K∑

j=1

β2
p+j , (2.3)

for some penalty parameter λ > 0.
Denoting the spline design matrix F = {F (x1)t, . . . , F (xn)t}t, the vec-

tor of responses Y = (Y1, . . . , Yn)t and Dp = diag(0p+1, 1K) the matrix
indicating that only the spline coefficients are to be penalized, the result-
ing estimator β̂ is given by the ridge regression formula

β̂ =
(
F tF + λD

)−1
F t Y, (2.4)

and the corresponding estimated vector m̂ = (m̂(x1), . . . , m̂(xn))t:

m̂ = Fβ̂ = F
(
F tF + λD

)−1
F t Y. (2.5)

2.2.1 Penalized S-regression spline estimation

It is easy to see that, as in unpenalized linear regression, the estimator
defined by the minimum of (2.3) may be seriously affected by a small
proportion of atypical observations. These “outliers” may be errors in the
data, or, more interestingly, data points that follow a different model or
random process. In what follows we will be concerned with estimating the
regression function m(x) in (2.1) that applies to the majority of the data.
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A straightforward approach to obtain penalized regression estimators
that are more resistant to outliers than those defined by (2.3) is to replace
the squared residual loss function by a slowly increasing function ρ:

n∑

i=1

ρ
(
Yi − F (xi)tβ

)
+ λ

K∑

j=1

β2
p+j , (2.6)

where ρ is even, non-decreasing in [0,∞) and ρ(0) = 0 (see also Lee and
Oh, 2007). Intuitively, the function ρ(t) should increase at a slower rate
than t2, particularly for large residuals. A common choice for ρ in (2.6) is
given by Huber’s family

ρc(t) =

{
t2 if |t| ≤ c

2 c |t| − c2 if |t| > c ,
(2.7)

where c > 0 is a tuning constant. The parameter c can be thought of as
a threshold such that observations with residuals larger than c have a re-
duced effect on the estimating equation (2.6). Note that as c increases, the
minimum of (2.6) approaches that of (2.3). In other words, the estimator
downweights the influence of observations with large residual (i.e. larger
than c).

To apply this method in practice, we need to select a value of c de-
pending on σ, the standard deviation of the errors ε in (2.1). This can be
easily done if a robust scale estimator σ̂n of σ is available. In this case we
can compute our estimator using the standardized residuals:

β̂n = argmin
β

n∑

i=1

ρc

(
Yi − F (xi)tβ

σ̂n

)
+ λ

K∑

j=1

β2
p+j . (2.8)

Given a set of residuals ri = Yi−F (xi)tβ̂n, i = 1, . . . , n, corresponding
to an estimator β̂n, a robust M-scale estimator σ̂n (Huber, 1964) satisfies

1
n

n∑

i=1

ρ

(
ri

σ̂n

)
= b, (2.9)

where, ρ : R → [0,∞) is bounded and even and, to obtain consistency
when the errors are normal, the constant b satisfies b = EΦ [ρ (Z)], with Φ
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the standard normal distribution. Note that if ρ(t) = t2 and b = 1 then
σ̂n = sn the residual standard deviation.

Huber (1964) proposed to simultaneously solve the “regression” and
“scale” equations, (2.8) and (2.9), respectively. In our context this is equiv-
alent to finding the solutions β̂n and σ̂n to the following non-linear system
of equations:

∂

∂β




n∑

i=1

ρc

(
Yi − F (xi)tβ

σ̂n

)
+ λ

K∑

j=1

β2
p+j .




∣∣∣∣∣∣
β=β̂n

= 0 ,

1
n

n∑

i=1

ρ

(
Yi − F (xi)t β̂n

σ̂n

)
= b.

Finding β̂n and σ̂n generally requires using an iterative algorithm. This
scheme is known in the robustness literature as Huber’s Proposal II. Un-
fortunately, the robustness properties of the solution to this problem are
not completely satisfactory. In particular, the resulting estimators may not
be resistant to outliers, i.e. they have low breakdown point (see Donoho
and Huber (1983) for a definition of breakdown point). This was shown
by Maronna and Yohai (1991) for simultaneous general M-estimators of
regression and scale.

S-estimators for linear regression were introduced by Rousseeuw and
Yohai (1984). They can be tuned to have a high breakdown point and do
not require an auxiliary residual scale estimator. The basic idea is to note
that the least squares estimator is the vector of regression coefficients that
produces residuals with minimal sample standard deviation.

A robust alternative is then obtained by finding the vector of regression
coefficients β that produces residuals that minimize a robust scale estima-
tor of the residuals, instead of the standard deviation. In other words, the
S-estimators are defined by

β̂n = argmin
β

σ̂n (β) , (2.10)

where σ̂n(β) is an M-scale that solves (2.9). It is easy to see that σ̂n =
σ̂n(β̂) is also a consistent estimator of the scale σ of the errors. For linear
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regression models, Rousseeuw and Yohai (1984) and Davies (1990) showed
that S-estimators are consistent and asymptotically normal when the dis-
tribution of the errors is symmetric.

Note that there is no explicit formula to compute σ̂(β) for each β.
Furthermore if ρ is bounded, then the function σ(β) is non-convex, and
may have several local minima. Solving (2.10) is a difficult numerical
problem that involves finding the minimum of an implicitly defined non-
convex function in several variables. A recently proposed algorithm for
unpenalized S-regression estimators can be found in Salibian-Barrera and
Yohai (2006).

One way to obtain robust penalized spline estimators is to replace the
mean squared residuals in (2.3) by a robust estimator of the scale of resid-
uals. In this chapter we consider using the S-scale, which can naturally be
seen as a penalized S-regression spline estimator.

More specifically, we define β̂S as

β̂S = argmin
β

[
n σ̂2

n (β) + λ βtDβ
]
, (2.11)

where, for each β, σ̂n(β) satisfies

1
n

n∑

i=1

ρ

(
Yi − F (xi)tβ

σ̂n(β)

)
= b, (2.12)

the constant b = EΦ [ρ (Z)], and Φ is the standard normal distribution
(Maronna et al., 2006).

A commonly used family of loss functions ρ is given by Tukey’s bi-
square family (Beaton and Tukey, 1974)

ρd(u) =

{
3 (u/d)2 − 3 (u/d)4 + (u/d)6 if |u| ≤ d,

1 if |u| > d.
(2.13)

The choice d = 1.5476 yields b = EΦ [ρ (Z)] = 0.50. The associated unpe-
nalized S-regression estimator has maximal asymptotic breakdown point
50% (Rousseeuw and Yohai, 1984). Tukey’s bi-square ρ function is the
standard choice for a bounded ρ function. Changing the ρ function will
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not significantly increase the efficiency of the estimator (see in Table 2.5,
section 2.3.2). The use of the biweight loss function leads to an efficiency
that comes close to the maximal value.

The next result shows that the critical points of the objective function
in (2.11) can be written as the solution of a weighted penalized splines
problem. This expression suggests an iterative procedure to compute the
penalized S-regression spline estimators. A similar procedure holds for
computing penalized MM-regression spline estimators.

Result 2.1. The penalized S-regression spline estimator for the regression
spline model (2.1) can be written as m̂S = Fβ̂S where

β̂S =

{
F tW (β̂S)F +

λ

τ(β̂S)
D

}−1

F tW (β̂S)Y, (2.14)

where W (β) = diag (Wi(β)) ∈ Rn×n with Wi(β) = ρ′ (r̃i(β)) /r̃i(β), r̃i(β) =
(Yi − F (xi)t β)/σ̂n(β), and
τ(β) = n σ̂2

n(β) /
[
(Y − Fβ)t W (β) (Y − Fβ)

]
.

Proof of Result 2.1: Taking the derivative with respect to β for σ̂n(β) 6=
0 of the M-scale function in (2.12), we obtain

n∑

i=1

ρ′
(

ri(β)
σ̂n(β)

) (−F (xi)σ̂n(β)− ri(β)∇σ̂n(β)
σ̂2

n(β)

)
= 0,

where ∇σ̂n(β) = ∂σ̂n(β)/∂β. It follows that

∇σ̂n(β) = −
n∑

i=1

ρ′
(

ri(β)
σ̂n(β)

)
F (xi)

/[
n∑

i=1

ρ′
(

ri(β)
σ̂n(β)

) (
ri(β)
σ̂n(β)

)]

=
[−σ̂n(β) F t W (β) r(β)

]/[
r(β)t W (β) r(β)

]
, (2.15)

where r(β) = (Y − F tβ). At the minimum of (2.11) β̂S we have

2n σ̂n(β̂S)∇σ̂n(β̂S) + 2λD β̂S = 0,

from which follows, using (2.15) that

−τ(β̂S) F t W (β̂S) r(β̂S) + λD β̂S = 0,
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and thus equation (2.14) follows. ¤

Remark 2.1. Note that both the weights and the penalty parameter on
the right-hand side of (2.14) depend on β̂S on the left of that equation. Al-
though not useful for direct calculation of β̂S , this representation naturally
suggests iterations of the form

β̂S,k+1 =
{

F tW (β̂S,k)F + λDτ(β̂S,k)−1
}−1

F tW (β̂S,k)Y, k = 0, 1, . . . ,

to find critical points of (2.11). The corresponding algorithm is presented
in the next section 2.2.2.

Remark 2.2. When ρ(t) = t2 the M-scale estimator σ̂n reduces to the
sample standard deviation. In this case we have W (β) = 2 In, where In

is the n × n identity matrix, and τ(β) = 1/2. Hence, as expected, (2.14)
reduces to the usual penalized least squares formula (2.4).

2.2.2 Algorithm

Although (2.14) suggests easily implementable iterations to calculate a
critical point of (2.11), care should be taken as the function σ̂n : Rp → R+

in (2.12) is generally non-convex. In other words, the objective function
in (2.11) may have several critical points that only correspond to local
minima. As a result, the iterations derived from Result 2.1 above may
converge to different critical points (some of them non-optimal) depending
on the starting value. As it is done for S-estimators for linear regression
models, we propose to start the iterations from many initial points, and
select the best resulting point (in terms of value of the objective function)
as our approximate solution to the minimization problem (2.11).

Our algorithm can be described in the following steps:

Step (1) Let β̃
(0)
1 , . . . , β̃

(0)
J , be initial candidates. For each β̃

(0)
j :

(a) Compute σ̂n(β̂(0)
j ), τ(β̂(0)

j ), and W (β̂(0)
j ).

(b) Set k = 0. Iterate the following steps:
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(i) Letβ̂(k+1)
j ={

F tW (β̂(k)
j )F + λDτ−1(β̂(k)

j )
}−1

F tW (β̂(k)
j )Y .

(ii) If either k = maxit (maximum number of iterations) or
‖β̂(k)

j − β̂
(k+1)
j ‖ < ε ‖β̂(k)

j ‖ where ε > 0 is a fixed small

constant (the tolerance level) , then set β̂F
j = β̂

(k)
j and

break.

(iii) Else, compute σ̂n(β̂(k+1)
j ), τ(β̂(k+1)

j ), W (β̂(k+1)
j ) and set

k ← k + 1.

Step (2) Calculate the objective function for each β̂F
j , j = 1, 2, . . . , J ,

and select the one with the lowest value, i.e. let

β̂S = argmin
1≤j≤J

[
n σ̂2

n(β̂F
j ) + λ β̂F

j D β̂F
j

]
.

The J initial candidates β̃
(0)
j in Step 1 can be chosen in a number of

ways. Intuitively we want them to correspond to different regions of the
optimization domain. In linear regression problems, these initial points
are generally chosen based on the sample. For example, if there are d

covariates, J random subsamples of size d + 1 are selected from the data,
and β̃

(0)
j is set to the least squares fit of the j-th subsample. A similar

approach can be applied here, where, to avoid ill-conditioned subsamples
caused by the sparsity of the design matrix based on the spline basis in
(2.2), we take subsamples of larger size, e.g. floor(n/5). Note that this
set of J initial candidates can also be extended to include the M- and
classical penalized regression splines estimators at very little additional
computational cost.

We have coded the above algorithm in R (R Development Core Team,
2008), and made it publicly available at http://www.stat.ubc.ca/∼
matias/penalised, as well as through the journal’s supplemental mate-
rials facility. In our experience the above algorithm converges without
problems in the vast majority of the cases. The algorithm with ε = 10−6

and maxit = 500 converges generally in less than 60 iterations. For all of
our simulation experiments, see section 2.3.2, we have never encountered a
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situation where the algorithm for penalized S-regression spline estimation
diverged.

2.2.3 Penalty parameter selection

To avoid overfitting the data, the penalty parameter λ in (2.11) is of-
ten chosen so as to minimize an estimator of the resulting mean squared
prediction error. Such an estimator can be computed by leave-one-out
cross-validation. More specifically, for each value of λ, let

CV(λ) =
1
n

n∑

i=1

(
yi − m̂(xi)(−i)

)2
,

where m̂(x)(−i) is the regression estimator obtained without using the pair
of observations (yi, xi). To evaluate CV(λ) above it is not necessary to
re-compute the estimator m̂(x) n times. It has been shown in Ruppert
et al. (2003) that

CV(λ) =
1
n

n∑

i=1

(yi − m̂(xi))
2

(1−H(λ)i,i)
2 , (2.16)

where H(λ)i,i denotes the i-th diagonal element of the “hat”-matrix

H(λ) = F
(
F t F + λD

)−1
F t,

with F and D as in (2.4). Furthermore, if one replaces each (1−H(λ)i,i) by
their average 1− trace(H(λ))/n, the generalized cross-validation criterion
is obtained.

GCV(λ) = n

n∑

i=1

(yi − m̂(xi))
2 / (n− trace(H(λ)))2

= n
∥∥∥Y − Fβ̂

∥∥∥
2
/ (n− trace(H(λ)))2 . (2.17)

See Craven and Whaba (1979) and Ruppert et al. (2003), among others,
for more details.

Using these criteria to select a value of λ when the data may con-
tain outliers is generally not recommended (see, for example, Cantoni and



2.2. Penalized S-regression splines 35

Ronchetti (2001b) and references therein). Intuitively one can see that all
observations yi, i = 1, . . . , n in (2.17) are treated with equal importance.
However, if, for some 1 ≤ j ≤ n, the observation yj is atypical, we would
not want to fit it well. In other words, regardless of the robustness of
the estimator m̂(x), the criteria above may select a value of λ that results
in an estimated m(xj) closer to yj than desired. For the case of M-type
smoothing splines, using the concept of pseudo-data of Cox (1983), Can-
toni and Ronchetti (2001b) proposed to down-weight the terms in (2.16)
according to their residuals. This resulted in their robust CV criterion.
Define the scaled residuals of the M-estimator by r̃i,M = (yi− m̂M (xi))/σ̂,
where σ̂ is the median absolute deviation of the residuals and m̂M (xi) is
the M-estimator of m(xi). With ρ′′c = n−1

∑n
i=1 ρ′′c (r̃i,M ), ρ′′c denoting the

second derivative of ρc and KK = (In + (λσ̂/ρ′′c )Dp)−1,

RCV =
1
n

(
σ̂

ρ′′c

)2 n∑

i=1

{ρ′c(r̃i,M )}2

(1−Kii)2
.

For penalized S-regression splines, Result 2.1 suggests that we can think
of β̂S as the solution to

min
β

∥∥∥W (β̂S)1/2 (Y − F β)
∥∥∥

2
+ (λ/τ(β̂S))βt D β,

where W (β̂S) and τ(β̂S) are given in Result 2.1. The above representations
leads us to consider the GCV criterion in (2.17) with response variable
Ỹ = W (β̂S)1/2 Y , predictors F̃ = W (β̂S)1/2 F and penalty term λ/τ(β̂S).
Noting that some of the weights may be zero, we propose to select λ by
minimizing

RGCV(λ) = nw

∥∥∥W (β̂)1/2
(
Y − Fβ̂

)∥∥∥
2
/ (nw − trace(HS(λ)))2 , (2.18)

where nw is the number of non-zero weights and

HS(λ) = F̃
(
F̃ tF̃ + (λ/τ(β̂S))D

)−1
F̃ t

= W (β̂S)1/2 F
(
F tW (β̂S)F + (λ/τ(β̂S))D

)−1
F W (β̂S)1/2,
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2.3 Numerical results

2.3.1 Simulation settings

The settings for the simulation study are as follows. The observations for
the design variable x1, . . . , xn are generated from the uniform distribution
on the interval [−1, 1], for various sample sizes. These values are kept fixed
for all settings to reduce simulation variability. The sample sizes taken are
n = 25, 100 and 250.

For the mean structure in (2.1) we have used the following functions,
which represent a variety of shapes, m1(x) = sin(πx), m2(x) = sin(2π(1−
x)2), m3(x) = x + x2 + x3 + x4, and m4(x) = −20 + e3x. Function m2 is
the same one used by Lee and Oh (2007) to facilitate a comparison with
the results presented there.

For the error distribution we used five possibilities, ordered according
to the heaviness of their tails, (i) uniform distribution(-1,1), (ii) normal
distribution N(0, 0.72), (iii) logistic distribution(0,1), (iv) slash distribu-
tion, defined as N(0, 1)/uniform(0, 1), and (v) Cauchy distribution(0,1).
Both the Cauchy and slash distribution are heavy-tailed.

We compare three penalized regression spline estimation methods in
this simulation study: (A) the non-robust method for penalized regression
spline estimation as in (2.5), using the method of penalized least squares
(LS), (B) Penalized M-regression spline estimators as studied by Lee and
Oh (2007). (C) the method proposed in this chapter, using penalized S-
regression spline estimators, and employing the algorithm as described in
section 2.2.2. For the proposed method using penalized S-regression spline
estimators we use the Tukey’s biweight family of loss function ρd(u) as in
(2.13) with d = 1.547. For the penalized M-regression spline estimators we
use, as suggested in Lee and Oh (2007), ρc(t) as in (2.7) with c = 1.345 σ̂,
where σ̂ is the median absolute deviation of residuals.

For all three methods, we use truncated cubic splines (p = 3) with
K = 6, 25 or 35 knots (corresponding to sample sizes 25, 100 and 250),
spread equally according to the quantiles of the data. We have tried with
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different choices of K as well (results shown in Table 2.6, section 2.3.2)
and found similar results. The penalty parameter λ is chosen by minimiz-
ing the generalized cross validation (GCV) criterion for the LS-estimation
method. Robust cross validation (RCV) defined in Cantoni and Ronchetti
(2001b) is used for the M-regression spline estimation method. Robust
generalized cross validation (RGCV) defined in section 2.2.3 is used for
the S-estimation method.

For the proposed method of penalized S-regression spline estimation
and the M-regression spline estimation method as proposed by Lee and
Oh (2007) we set the tolerance level in the algorithm step(1) (b) (ii) to
ε = 10−6. The maximum number of iterations was set to 500.

To investigate the robustness of the methods against outliers, we ran-
domly generated different percentages of outliers (5%, 10%, 20%, 30% and
40%) for each of the simulated cases using either a normal distribution with
mean 20 and standard deviation 20, to get scattered outliers, or with mean
20 and standard deviation 2 for a more concentrated cloud of outliers.

To give an impression on the variability of the obtained estimators, we
plot in Figure 2.1, a scatter plot of one of the randomly generated data
sets, together with the fitted values from the penalized LS-, M- and S-
regression spline estimation methods. We used randomly generated data
sets with mean function m1(x) and error distribution N(0, 1) for sample
size n = 100. Figure 2.1 (a) shows the situation without outliers, giving
close correspondence between all three methods. In the situation of 30%
of scattered outliers in Figure 2.1 (b), the drastic effects of the outliers
are clearly visible for the penalized least squares method. A smaller effect
is detected for the penalized M-regression spline estimation method. In
contrast to both penalized LS- and M-regression spline estimator, the pe-
nalized S-regression spline estimator remains close to the true regression
function, also in presence of outliers.
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Figure 2.1: Fitted values (a) without outliers and (b) with 30% of outliers
from N(20, 22) . True function sin(πx) (solid line); fitted curves from pe-
nalized LS-regression spline estimation (dashed); penalized M-regression
spline estimation (dotted) and penalized S-regression spline estimation
(dot-dashed).
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2.3.2 Simulation results

The goodness of fit of the estimated model is quantified by computing the
median average squared error and median absolute deviation of average
squared error. Denoting m̂j(xi) the estimated value of m(xi) for simulation
run j (j = 1, . . . , J = 1000), the average squared error (ASE) is defined by

ASEj =
1
n

n∑

i=1

(m(xi)− m̂j(xi))2, j = 1, 2, . . . , J.

Table 2.1 presents summary values of the ASE (median and median ab-
solute deviation) for the three estimation methods for the normal error
distribution and with mean function m1.

In all cases, the median ASE of the proposed method of penalized S-
regression spline estimation is smaller than that of the other two methods
for samples with more than 10% of outliers. Note that Lee and Oh’s (2007)
method of penalized M-regression spline estimation works better for sam-
ples with 5% and 10% of outliers.

For the penalized least squares and penalized M-regression spline estima-
tors, the ASE is clearly increasing with the percentage of outliers increas-
ing. For penalized S-regression spline estimation, the ASE values tend to
be quite stable, only increasing near a high fraction of outliers (> 40%).
As expected, the goodness of fit as measured by the ASE values improves
for larger sample sizes.

Table 2.1 clearly shows that the penalized least squares method may al-
ready break down with only 5% of outliers. For the proposed method of
penalized S-regression spline estimation, the simulated ASE values are rel-
atively small even with 40% of scattered outliers for sample sizes n = 100
and n = 250. For n = 25 a clearer increase (breakdown) is observed for
the penalized S-regression spline estimation method when the presence of
outliers reaches 40% of the sample size. For penalized M-regression spline
estimation, the breakdown arrives earlier, showing the need for taking the
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scale into consideration in the fitting method and working with a bounded
ρ-function.

Table 2.1: Median and median absolute deviation (between parenthesis)
of the average squared error ASE for penalized least squares (LS), penalized
M (M) and penalized S (S) regression spline estimation for data generated
with mean structure m1(x), error terms from a N(0, 0.72) distribution, and
for different sample sizes. We consider different percentages ε of outliers
generated from N(20, 22).

ε n = 25 n = 100 n = 250

LS M S LS M S LS M S

0% 0.07 0.08 0.18 0.02 0.03 0.07 0.01 0.01 0.04

(0.05) (0.05) (0.13) (0.01) (0.01) (0.05) (0.01) (0.01) (0.02)

5% 2.31 0.09 0.21 1.57 0.03 0.08 1.35 0.02 0.04

(3.25) (0.07) (0.17) (1.19) (0.02) (0.05) (0.69) (0.01) (0.02)

10% 7.48 0.12 0.21 5.12 0.06 0.07 4.56 0.04 0.03

(7.07) (0.09) (0.17) (2.84) (0.03) (0.05) (1.73) (0.02) (0.02)

20% 22.9 0.44 0.24 18.5 0.20 0.06 16.9 0.17 0.03

(16.4) (0.42) (0.22) (7.01) (0.09) (0.04) (4.18) (0.05) (0.02)

30% 45.0 3.95 0.35 38.8 0.97 0.05 37.3 0.79 0.02

(24.5) (5.47) (0.42) (12.0) (0.47) (0.03) (7.06) (0.20) (0.01)

40% 75.6 70.2 32.5 66.8 36.4 0.07 66.0 7.62 0.02

(34.7) (18.2) (48.0) (16.8) (40.6) (0.06) (9.74) (4.69) (0.02)

To give an impression on the variability of the obtained estimators, we
plot the box plots of log scale of ASEs of the simulation samples from penal-
ized least squares, penalized M- and S-regression spline estimation in Fig-
ures 2.2 and 2.3 for the data with outliers N(20, 22) and N(20, 202) respec-
tively. These plots show that the ASEs of the penalized S-regression spline
estimator remain stable as the proportion of contamination increases. Even
though they become more variable for 40% of outliers, the median is still
at the same level as before. The penalized LS-estimator’s ASEs grow very
rapidly. Similarly, the penalized M-regression spline estimator’s ASEs grow
rapidly after 10% of outliers. These results are confirming that the penal-
ized M-regression spline estimation method works better with less than



2.3. Numerical results 41

10% of outliers, while the penalized S-regression spline estimation method
works well for all considered percentages of outliers.
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Figure 2.2: Box plots of ASEs using (a) penalized LS-estimation, (b)
penalized M-regression spline estimation and (c) penalized S-regression
spline estimation for samples with mean structure m1(x), error distribution
N(0, 0.72) and outliers N(20, 22), for sample size n = 100.
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Figure 2.3: Box plots of ASEs using (a) penalized LS-estimation, (b)
penalized M-regression spline estimation and (c) penalized S-regression
spline estimation for samples with mean structure m1(x), error distribution
N(0, 0.72) and scattered outliers N(20, 202), for sample size n = 100.
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Table 2.2: Median and median absolute deviation (between parenthesis) of
the average squared error ASE for penalized least squares (LS), penalized
M (M) and penalized S (S) regression spline estimation for data gener-
ated with mean structure m1(x), error terms from different distributions
Uniform, Logistic, Slash and Cauchy, and for sample sizes n = 100 with
different percentages ε of outliers generated from N(20, 22).

ε 0% 5% 10% 20% 30% 40%

Uniform LS 0.02 1.62 5.27 18.4 39.4 68.3

(0.0) (1.2) (2.9) (7.0) (11) (15)

M 0.02 0.03 0.04 0.16 0.78 30.9

(0.0) (0.0) (0.0) (0.1) (0.3) (38)

S 0.15 0.15 0.13 0.10 0.06 0.07

(0.1) (0.1) (0.1) (0.1) (0.0) (0.1)

Logistic LS 0.14 1.75 5.44 18.5 39.5 68.6

(0.1) (1.3) (3.0) (7.0) (11) (16)

M 0.16 0.21 0.34 1.24 6.15 59.6

(0.1) (0.1) (0.2) (0.6) (3.2) (12)

S 0.34 0.33 0.31 0.28 0.26 0.49

(0.2) (0.2) (0.2) (0.2) (0.2) (0.6)

Slash LS 6.69 8.95 12.8 25.5 46.1 73.4

(8.4) (9.8) (11) (16) (22) (27)

M 0.37 0.51 0.87 3.66 24.0 73.4

(0.2) (0.3) (0.6) (2.2) (15.2) (8)

S 0.32 0.32 0.31 0.31 0.42 56.5

(0.2) (0.2) (0.2) (0.2) (0.4) (83)

Cauchy LS 4.92 6.71 10.3 23.5 45.1 73.3

(6.1) (7.2) (8.8) (13) (19) (25)

M 0.19 0.26 0.45 2.05 14.1 71.1

(0.1) (0.2) (0.3) (1.3) (11) (9)

S 0.12 0.12 0.12 0.14 0.21 33.3

(0.1) (0.1) (0.1) (0.1) (0.2) (49)

Next we compare the effects of the different error distributions on the
performance of the estimates. The results are shown in Table 2.2 for sample
size n = 100 and true mean function m1. The proposed method gives
the smallest median ASE values for all considered error distributions if
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there are more than 20% outliers. Penalized M-regression spline estimation
works better for the samples with 5% and 10% of outliers for uniform
and logistic error distributions. For penalized LS- and M-regression spline
estimation methods, the ASE values are relatively large for heavy-tailed
distributions (Slash and Cauchy). Note that in absence of outliers (ε=0%)
the method of penalized S-regression spline estimation works better than
LS at heavy tailed distributions.

Table 2.3: Median and median absolute deviation (between parenthesis)
of the average squared error ASE for penalized least squares (LS), penalized
M (M) regression spline and penalized S (S) regression spline estimation
for data generated from functions m2, m3 and m4 with error terms from
N(0, 0.72) for sample size n = 100 with different percentages ε of outliers
generated from N(20, 22).

ε% m2 m3 m4

LS M S LS M S LS M S

0 0.25 0.27 0.38 0.02 0.03 0.07 0.04 0.04 0.14

(0.02) (0.02) (0.11) (0.01) (0.02) (0.05) (0.02) (0.02) (0.07)

5 1.87 0.28 0.40 1.47 0.03 0.08 5.30 0.05 0.13

(1.17) (0.03) (0.13) (1.09) (0.02) (0.05) (4.00) (0.02) (0.07)

10 5.44 0.32 0.37 4.83 0.06 0.07 17.3 0.07 0.12

(2.82) (0.05) (0.13) (2.73) (0.03) (0.05) (9.88) (0.03) (0.07)

20 18.6 0.57 0.33 17.4 0.20 0.06 63.0 0.22 0.11

(7.08) (0.14) (0.12) (6.67) (0.09) (0.04) (24.2) (0.09) (0.06)

30 38.5 1.89 0.31 36.9 0.96 0.05 133 1.02 0.11

(11.8) (0.85) (0.12) (11.2) (0.46) (0.04) (38.0) (0.45) (0.06)

40 66.4 47.3 0.38 63.5 30.7 0.06 229 51.1 0.11

(16.2) (29.6) (0.25) (15.4) (36.4) (0.06) (54.6) (69.2) (0.08)

We have further checked our proposed method with that of Lee and
Oh (2007) using the same regression function m2 as in their paper. We
generated errors εi from a normal distribution, and included different per-
centages of outliers for sample size n = 100. For each of these settings we
computed the ASE over 1000 simulation runs; the results are presented
in Table 2.3. All previous findings are confirmed. The S-regression spline
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estimation method does a better job than penalized M-regression spline
estimation when there are 20% of outliers or more. The penalized M-
regression spline estimation method works better for the cases with 5%
and 10% of outliers. This holds for the goniometric (m2), the polynomial
(m3), and the exponential (m4) mean functions.

For completeness we here present the results of an additional simulation
study, we used an S-estimator with 25% breakdown point and we observed
that the efficiency of the proposed method is higher in the absence of
outliers, but it is lower than that of penalized LS- and M-regression spline
estimators.

Table 2.4: Median and median absolute deviation (between parenthesis)
of the average squared error ASE for penalized least squares (LS), penalized
M (M) regression spline estimation and penalized S (S) regression spline
estimation with 50% and 25% breakdown point for data generated with
mean structure sin(πx), error terms from a N(0, 0.72) distribution and
sample size n = 100 with different percentages ε of outliers generated from
N(20, 22).

ε 50% Breakdown point 25% Breakdown point

LS M S S

0% 0.02 0.03 0.08 0.04

(0.01) (0.01) (0.06) (0.02)

5% 1.62 0.03 0.08 0.04

(0.48) (0.02) (0.05) (0.02)

10% 5.18 0.06 0.08 0.04

(0.99) (0.03) (0.05) (0.02)

20% 18.60 0.21 0.06 0.04

(2.41) (0.09) (0.04) (0.02)

30% 38.86 1.02 0.05 12.49

(2.77) (0.51) (0.04) (3.99)

40% 67.97 46.43 0.04 53.38

(3.54) (28.48) (0.03) (5.80)

Table 2.4 shows for one of the simulation settings the results for penal-
ized S-regression estimation using Tukey’s bi-square ρ function with first a
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50% breakdown point (d = 1.5476) and next with a 25% breakdown point
(d = 2.937).

Figure 2.4 shows the box plots of average squared error (ASE) for the
same setting and estimators. As we expect, the average squared errors are
lower for the case of the 25% breakdown point than for the 50% breakdown
point case. That is, to increase the efficiency of the penalized S-regression
spline estimator one needs to lower its breakdown point. The price to
pay for this increase of efficiency in absence of outliers (by taking a lower
breakdown point) is a decrease of the robustness. As can be seen from
Table 2.4, the S-estimator with 25% breakdown point has an large bias if
one has large amounts of outliers (30% or 40%).
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Figure 2.4: ASE for penalized least squares (LS), penalized M (M) re-
gression spline estimation and penalized S-regression spline estimation with
50% (S-50%BDP) and 25% (S-25%BDP) breakdown point for data with no
outliers.
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In addition we did the simulations with a different ρ function. Table 2.5
shows one of the simulation setting results for penalized S-regression esti-
mator with different ρ functions. We defined

ρ1(u) =

{
4 (u/d)2 − 3 (u/d)4 if |u| ≤ d ,

1 if |u| > d.
(2.19)

The choice d = 0.57735 yields b = EΦ [ρ1 (Z)] = 0.50. We compared this to
the results that we earlier obtained when using a ρ function from Tukey’s
bi-square family. Table 2.5 illustrates that the efficiency of the penalized
S-regression spline estimator does not change significantly with respect to
different ρ functions.

Table 2.5: Median and median absolute deviation (between parenthesis)
of the average squared error ASE for penalized least squares (LS), penalized
M (M) regression spline estimation and penalized S (S) regression spline
estimation using Tukey’s bi-square family ρ-function and ρ1-function with
50% breakdown point for data generated with mean structure sin(πx), error
terms from a N(0, 0.72) distribution and sample size n = 100 with different
percentages ε of outliers generated from N(20, 22).

ε Tukey’s bi-square family ρ-function ρ1-function

LS M S S

0% 0.02 0.03 0.08 0.07

(0.01) (0.01) (0.06) (0.04)

5% 1.62 0.03 0.08 0.07

(0.48) (0.02) (0.05) (0.05)

10% 5.18 0.06 0.08 0.07

(0.99) (0.03) (0.05) (0.05)

20% 18.60 0.21 0.06 0.08

(2.41) (0.09) (0.04) (0.05)

30% 38.86 1.02 0.05 0.09

(2.77) (0.51) (0.04) (0.04)

40% 67.97 46.43 0.04 0.12

(3.54) (28.48) (0.03) (0.07)
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In an additional simulation study we have tried with different choices
of K as well. We selected the number of knots (num.knots) as follows: we
took either the number of unique x-values divided by four (and rounded
downwards), or 35, whichever value was the smallest. In case that number
was smaller than 5, we would use 5 knots. We checked our results with
a large number of knots (two times the number of knots) in a simulation
study. We present in Table 2.6 the summary results from 100 simulation
samples, the same as in the previous case, but with a double number of
knots.

Table 2.6: Median and Median absolute deviation (between parenthesis)
of the average squared error ASE for penalized least squares (LS), penal-
ized M (M) regression spline estimation and penalized S (S) regression
spline estimation using different number of knots for data generated with
mean structure sin(πx), error terms from a N(0, 0.72) distribution and
sample size n = 100 with different percentages ε of outliers generated from
N(20, 22).

ε num.knots 2*num.knots

LS M S LS M S

0% 0.02 0.03 0.08 0.02 0.03 0.08

(0.01) (0.01) (0.06) (0.01) (0.01) 0.06

5% 1.62 0.03 0.08 1.63 0.03 0.09

(0.48) (0.02) (0.05) (0.49) (0.02) (0.06)

10% 5.18 0.06 0.08 5.20 0.06 0.08

(0.99) (0.03) (0.05) (1.01) (0.03) 0.05

20% 18.60 0.21 0.06 18.66 0.21 0.07

(2.41) (0.09) (0.04) (2.39) (0.09) (0.04)

30% 38.86 1.02 0.05 38.93 1.13 0.06

(2.77) (0.51) (0.04) (2.79) (0.61) (0.04)

40% 67.97 46.43 0.04 68.20 47.83 0.04

(3.54) (28.48) (0.03) (3.76) (27.96) (0.03)

Table 2.6 shows similar results for both cases, hardly any differences
are observed. The penalized S-estimator is quite insensitive with respect
to the number of knots.
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2.4 Balloon data
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Figure 2.5: Fitted values for the balloon data. Penalized LS-regression
spline method (dotted), penalized S-regression spline method (solid) and
penalized M-regression spline method (dashed).

In this section, we have used the balloon data set from the R software’s
library ftnonpar. The data are radiation measurements from the sun,
taken from a flight of a weather balloon. Due to the rotation of the balloon,
or for some other reasons, outliers were introduced because the measuring
device was occasionally blocked from the sun. The response variable Y is a
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radiation measurement and the explanatory variable x is the index of the
measurement. The sample size equals 4,984. We took K = 35 knots spread
equally, and scaled the value λ according to the GCV, RCV and RGCV
methods, described in section 2.2.3. We obtained λ = 0.04 for penalized
LS-estimation method and λ = 0.1 for penalized M- and S-regression spline
estimation method.

Displayed in Figure 2.5 are regression estimates obtained by the pe-
nalized LS method, our proposed method of penalized S-regression spline
estimation and penalized M-regression spline estimation. The non-robust
curve suffers from the presence of the outliers, which is clearly visible
around the value x = 0.8. That is, the estimated curve was pulled up-
wards, in the direction of the outliers. The robust methods do not suffer
from this phenomenon.

2.5 Discussion

In this chapter a simple and effective method is proposed for robust fitting
penalized regression spline models. Generally, smoothing methods may be
influenced by outliers. The proposed method is easy to implement and
fast to converge. Penalized S-regression spline estimators improve on pe-
nalized least squares regression splines and penalized M-regression spline
estimators. The procedure performs very well in all of our numerical ex-
amples. The penalized M-regression spline estimation works better for the
cases with a small percentage of contamination but penalized S-regression
spline estimation works well for higher percentage of contamination too.

In the absence of outliers, the efficiency of the proposed method is not
very high. This is the price to pay for a high robustness. To increase the
efficiency of an S-estimator, we need to lower its breakdown point. In an
additional simulation study (results shown in Table 2.4, section 2.3.2) we
used an S-estimator with 25% breakdown point and we observed that the
efficiency of the proposed method is higher in the absence of outliers, but
it is lower than that of penalized LS- and M-regression spline estimators.
Changing the ρ function will not significantly increase the efficiency. This
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is known from robust regression analysis (see Hössjer, 1992) where it has
been shown that the highest possible Gaussian efficiency of an S-estimator
with the highest possible value for the breakdown point is about 33%.
The efficiency of the biweight loss function (leading to Tukey’s bi-square
ρ function) is close to this maximal value.

The asymptotic properties of penalized S-regression splines have not
yet been studied, and are a topic of our further research. We expect
that consistency and asymptotic normality still hold, under appropriate
regularity conditions. These results would be useful in order to construct
confidence bands for the curves, for example.





Chapter 3

A comparison of robust versions

of the AIC based on M, S and

MM-estimators

This chapter is based on the following publication:
Tharmaratnam, K. and Claeskens, G. (2011a). A comparison of robust
versions of the AIC based on M, S and MM-estimators. Statistics, in press.

Abstract

Variable selection in the presence of outliers may be performed by using
a robust version of Akaike’s information criterion AIC. In this chapter ex-
plicit expressions are obtained for such criteria when S- and MM-estimators
are used. The performance of these criteria is compared to the existing
AIC based on M-estimators and to the classical non-robust AIC. In a simu-
lation study and in data examples we observe that the proposed AIC with
S- and MM-estimators selects more appropriate models in case outliers are
present.
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3.1 Introduction

It has been recognized that variable selection procedures need special care
in the presence of outliers in the data. Since most of the classical pro-
cedures are likelihood-based, alternatives have been developed. Some of
the main developments to make classical model selection procedures for
linear models less sensitive to outlying observations are a robust version
of Akaike’s information criterion (AIC Akaike, 1973) based on M estima-
tors (Ronchetti, 1985), a robust Cp (Ronchetti and Staudte, 1994; Sommer
and Staudte, 1995), a robust version of cross-validation (Ronchetti et al.,
1997), see also the survey presented in Ronchetti (1997). Qian and Künsch
(1998) select models in a robust way using the concept of stochastic com-
plexity, while Agostinelli (2002) rather deals with weighted versions of like-
lihood estimators. Several of these model selection methods are described
in Maronna et al. (2006, Sec. 5.12) and Claeskens and Hjort (2008, Ch. 2
and 4). Müller and Welsh (2005) make use of the bootstrap to combine
a robust penalized criterion with a robust conditional expected prediction
loss function. Other use of the bootstrap for robust variable selection is
made by Salibián-Barrera and Van Aelst (2008). Heritier et al. (2009,
p. 159) present a form of the AIC based on robust quasilikelihood.

While the emphasis in the existing literature is mostly on M-estimation
when it comes to variable selection methods, in this chapter we investigate
whether improvements can be achieved when using S- or MM-estimators.
The derivation of information criteria in the style of the AIC using these
robust estimators is in the line with the generalized information criteria of
Konishi and Kitagawa (1996). When applied to estimation in likelihood
models free of outliers, this approach would lead to Takeuchi’s information
criterion (Takeuchi, 1976), which differs from the traditional AIC only in
its penalty term.

The rest of this chapter is organized as follows. The formula for the
robust version of AIC based on general M-estimators is derived in Sec-
tion 3.2. In Section 3.3 we provide a version of the AIC for use with robust
estimators of scale, which require separate attention. Some extensions to
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the use of MM-estimators and towards using uniform asymptotic expres-
sions (Omelka and Salibián-Barrera, 2010) are contained in Section 3.4.
Section 3.5 reports the results of a simulation study and data examples
that compare the performance of classical AIC, AIC based on M, S and
MM-estimation. Finally, Section 3.6 contains a discussion and concluding
remarks. The appendix contains the R code that is used for the calcula-
tions.

3.2 AIC for use with robust M-estimation meth-

ods

3.2.1 AIC for linear regression models

We consider the linear regression model

Yi = θt
0Xi + ui, i = 1, . . . , n, (3.1)

where the response variables Yi ∈ R (i = 1, . . . , n) are independent, the
covariate vector Xi ∈ Rp with a corresponding coefficient vector θ0 ∈ Rp

and the ui are random errors independent from the explanatory variable
Xi, with mean zero and constant variance σ2. For normal errors with
standard deviation σ, the Akaike information criterion for variable selection
is given by

AIC = 2n log σ̂ + 2(p + 1) + {n + n log(2π)}, (3.2)

where the last term, {n + n log(2π)}, may be omitted because it is inde-
pendent of the choice of the variables in the model and where σ̂ is the
maximum likelihood estimate of σ. The penalty takes the p regression
coefficients θ0 and the unknown error variance into account.

In general, Akaike’s information criterion is in full likelihood models
defined as AIC = −2 log-likelihood(θ̂) + 2× length(θ), with length(θ) the
number of parameters that are estimated in the model, and with θ̂ the
maximum likelihood estimator of the model parameters θ. The AIC arises
as an estimator of the expected value of the Kullback-Leibler distance
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between the maximized density of the data implied by the model and the
true density g, that is nearly always unknown,

KL(g, f(., θ̂)) =
∫ ∫

g(y|x) log g(y|x)dydG(x)−Rn

where Rn =
∫ ∫

g(y|x) log f(y|x, θ̂)dydG(x) and G is the cumulative distri-
bution function of X. A derivation of the traditional AIC can for example
be found in Claeskens and Hjort (2008, Sec. 2.3).

Since the AIC is likelihood-based, and thus is sensitive to outlying
observations in the data, we here search for more robust alternatives, in
the spirit of the generalized information criterion of Konishi and Kitagawa
(1996). In the case that outliers are present in the data, only the majority
of the data follows the above model (3.1). Extreme observations might
occur in both the explanatory variables and the response. It is in these
circumstances that we wish to investigate the inclusion or exclusion of
components of the covariate vector X.

3.2.2 M-estimators

As a robust alternative to maximum likelihood estimators, M-estimators
are used. Huber (1964) defined a general M-estimator as the minimum
with respect to θ of the objective function

∑n
i=1 ρ(yi|xi, θ), for a given

function ρ that has the properties of being even, non-decreasing in [0,∞)
and with ρ(0) = 0. Equivalently, when the response values Y1, . . . , Yn are
independent, the M-estimator for θ solves the equation

n∑

i=1

ψ(Yi|xi, θ) = 0 (3.3)

where ψ(y|x, θ) = ∂ρ(y|x,θ)
∂θ . Intuitively, to take care of outliers which result

in large residuals, the function ρ(·) should less increase than the squared
function, particularly for large residuals. A common choice for ρ is given
by Huber’s family with an unbounded loss function

ρc(t) =

{
t2 if |t| ≤ c

2 c |t| − c2 if |t| > c ,
(3.4)
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where c > 0 is a tuning constant that can be thought of as a threshold value
such that observations with residuals larger than c have a reduced effect
in the estimating equation (3.3). A value of 95% asymptotic efficiency
on the standard normal distribution is obtained when the constant equals
1.345 (Huber, 2004). In practice, a typical choice for c is 1.345 σ̂m, with σ̂m

the median absolute deviation (MAD) of the residuals, MAD(r1, . . . , rn) =
1.4826 mediani=1,...,n(|ri|) (with the constant 1.4826 based on the normality
assumption). The M-estimator is computed with ρ(yi|xi, θ) = ρc

(
yi−θtxi

σ̂m

)
.

The implementation of M-estimators uses an iteratively reweighted least
squares algorithm.

3.2.3 Derivation of a robust AIC

Instead of working with the maximized likelihood function in the Kullback-
Leibler distance, we use the loss function ρ and the corresponding robust
estimator θ̂ and consider as a good model one that minimizes the expected
value of the following weighted Kullback-Leibler distance that involves the
empirical distribution of the covariates,

1
n

n∑

i=1

∫
g(y|xi){log g(y|xi) + ρ(y|xi, θ̂)}dy

=
1
n

n∑

i=1

∫
g(y|xi) log g(y|xi)dy + Rρ

n, (3.5)

where Rρ
n = 1

n

∑n
i=1

∫
g(y|xi)ρ(y|xi, θ̂)dy. In the next section we make this

more concrete for the different robust estimators. For M-estimators, such
a robust AIC with the scale assumed to be known (and later estimated
from the largest model) has been obtained by Ronchetti (1997).

Since the first term is independent of the model, the key quantity to
study is Rρ

n, which depends on the data through the robust estimator θ̂.
The expected value of Rρ

n with respect to the robust estimator, under the
true density g for the response variable Yi given the covariate is equal to

Qn = E(Rρ
n) =

1
n

n∑

i=1

E

[∫
g(y|xi)ρ(y|xi, θ̂)dy

]
, (3.6)
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which is estimated by replacing the true distribution functions by their
empirical counterparts, leading to the estimator

Q̂n =
1
n

n∑

i=1

ρ(Yi|xi, θ̂).

For maximum likelihood estimation, Q̂n corresponds to the minus log like-
lihood function, evaluated at the maximum likelihood estimator, divided
by the sample size. To construct an AIC, we investigate the bias of Q̂n for
estimation of Qn, which will lead to an appropriate penalty term in the
variable selection criterion.

Define by θ0,n the least false parameter vector that corresponds to
the empirical distribution of the covariates and thus maximizes Qn(θ) =
1
n

∑n
i=1

∫
g(y|xi)ρ(y|xi, θ)dy. Denote Q0,n = Qn(θ0,n), Vn =

√
n(θ̂ −

θ0,n) and Jn = − 1
n

∑n
i=1

∫
g(y|xi)I(y|xi, θ0,n)dy, with information func-

tion I(y|x, θ) = −∂2ρ(y|x,θ)
∂θ∂θt . The score function is defined as u(y|x, θ) =

−∂ρ(y|x,θ)
∂θ , with variance Kn = 1

n

∑n
i=1 Var{u(Y |xi, θ0,n)}. The limit ver-

sions of Jn and Kn are denoted by J and K, respectively.

Result 3.1. Let Z̄n be the average of the values Zi = −ρ(Yi|xi, θ0,n) +∫
g(y|xi)ρ(y|xi, θ0,n)dy, assume that ρ is two times differentiable, and using

the notation as defined above,

Q̂n −Rρ
n = −Z̄n − 1

n
V t

nJVn + op(1/n). (3.7)

Proof. A Taylor expansion for Rρ
n gives that

Rρ
n =

1
n

n∑

i=1

∫ {
g(y|xi)

[
ρ(y|xi, θ0,n)− u(y|xi, θ0,n)(θ̂ − θ0,n)

−1
2
(θ̂ − θ0,n)tI(y|xi, θ0,n)(θ̂ − θ0,n) + oP (1/n)

]}
dy

= Q0,n +
1
2n

V t
nJnVn + oP (1/n).
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In a similar fashion, a Taylor expansion for Q̂n results in

Q̂n =
1
n

n∑

i=1

{
ρ(Yi|xi, θ0,n)− u(Yi|xi, θ0,n)(θ̂ − θ0,n)

−1
2
(θ̂ − θ0,n)tI(Yi|xi, θ0,n)(θ̂ − θ0,n)

}

+oP (1/n) = Q0,n − Z̄n − 1
2n

V t
nJnVn + oP (1/n).

Thus, it holds that Q̂n −Rρ
n = −Z̄n − 1

nV t
nJnVn + oP (1/n). 2

From (3.7) and since for robust estimators it holds that Vn
d→

N(0, J−1KJ−1), it follows that E(Q̂n−Qn) is approximately (leaving out
remainder terms of smaller order) equal to −Trace(J−1K)/n.

3.2.4 AIC for M-estimation

Based on the results of Section 3.2.3, a model selection criterion in the style
of Akaike’s information criterion is to compute Q̂n + Trace(J−1

n Kn)/n for
each candidate model, and then to select the model with the smallest such
value. Equivalently, we define a robust AIC, specific to the loss function
leading to different robust estimators,

AICρ = 2
n∑

i=1

ρ(Yi|xi, θ̂) + 2 Trace(J−1
n Kn) (3.8)

and select that model which has the smallest AICρ value.
In the equation above, the vector θ represents all unknown parameters

in the model, thus including the unknown σ. This implies that the infor-
mation matrices Jn and Kn have dimension (p + 1) × (p + 1) and partial
derivatives are computed with respect to all p + 1 unknown parameters.

A slightly simpler version is presented by Ronchetti (1997), when con-
sidering the case of a known σ (and afterwards plugging in an estimate from
the largest model). His robust AIC for M-estimators which fits within the
form (3.8).

More in line with the application of the AIC for use with maximum
likelihood estimation, all parameters are re-estimated in each model, which
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implies that the scale estimator also changes from model to model. This
leads to defining

AICρ.M = 2
n∑

i=1

ρc

(
Yi − θ̂t

mxi

σ̂m

)
+ 2 Trace(J−1

m,nKm,n), (3.9)

where ρc is, for example, the Huber loss function as in (3.4). In this
equation the empirical information matrices Jm,n and Km,n both have
dimension p× p and partial derivatives are only calculated with respect to
the regression parameters in the location part of the model. As requested
by a referee, we will use this simpler version of the AIC in the simulation
study and data analysis. For a better comparison, we will hence make such
a simplification for the other considered criteria as well. Using the full
information matrices (with dimension (p+1)× (p+1)) is computationally
a bit more involved but turns out, at least for the considered datasets,
not to make much difference with respect to variable selection. Simulation
results are shown in Table 3.9 in section 3.5.2.

3.3 AIC for use with robust estimators for scale

3.3.1 S-estimators

S-estimators for linear regression were introduced by Rousseeuw and Yohai
(1984) as an alternative to M-estimators that do not suffer that much
from leverage points (which are outliers in the covariates) and at the same
time have a high breakdown point and do not require an auxiliary scale
estimator.

The S-estimator θ̂s minimizes the scale function, that is, θ̂s =
argminθ∈Rp σ̂n(θ), where the scale function σ̂n(θ) is implicitly defined by
that function of θ that satisfies the equation

1
n

n∑

i=1

ρ0

(
yi − θtxi

σ̂n(θ)

)
= b, (3.10)

with ρ(yi|xi, θ) = ρ0

(
yi−θtxi

σ̂n(θ)

)
. The scale estimator is σ̂s = σ̂n(θ̂s). The

loss function ρ0 is a function that is even, continuously differentiable, non-
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decreasing on [0,∞), satisfies that ρ0(0) = 0 and has supu∈R ρ0(u) = 1. We
define b = EF0 [ρ0(u1)], with u1 one of the error terms in model (3.1) with
cumulative distribution function F0, and assume that 0 < ε0 < b < 1− ε0

to ensure consistency of the scale estimator under the central model F0.
The notation EF0 means that the expectation is computed with respect to
F0.

A commonly used family of loss functions ρ0 is given by Tukey’s bi-
square family (Beaton and Tukey, 1974)

ρ(u; d) =

{
3 (u/d)2 − 3 (u/d)4 + (u/d)6 if |u| ≤ d ,

1 if |u| > d .
(3.11)

The choice d = 1.5476 yields b = EΦ [ρ (Z; d)] = 0.5, with Φ the standard
normal cumulative distribution function and Z ∼ N(0, 1). The associ-
ated S-regression estimator has maximal asymptotic breakdown point 50%
(Rousseeuw and Yohai, 1984). Estimators with 30% breakdown point are
gotten when d = 2.5608, resulting in a higher efficiency. Both options are
contrasted in the simulation study.

3.3.2 AIC for S-estimation

For S-estimators the above approach for obtaining an AIC as in (3.8)
does not work because of the constraint (3.10). Indeed, when substitut-
ing S-estimators on the right hand side of (3.8) this gives as a first term
2

∑n
i=1 ρ(Yi|xi, θ̂s) = 2nb, which is a constant for all models and thus does

not differentiate between different models. Therefore, based on (3.2), we
propose a robust AIC with respect to S-estimation of the following form

AIC.S = 2n log(σ̂s) + 2 Trace(J−1
s,nKs,n). (3.12)

In this criterion we use the robust S-scale estimator σ̂s and take possible
model misspecification into account by the form of the penalty term (rather
than just counting the number of parameters). The empirical information
matrices Js,n and Ks,n (when considering partial derivatives with respect
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to θ) are defined as follows,

Js,n =
1
n

n∑

i=1

ρ′′d

(
yi − θ̂t

sxi

σ̂s

)
xix

t
i

σ̂2
s

and Ks,n =
1
n

n∑

i=1

ρ′2d

(
yi − θ̂t

sxi

σ̂s

)
xix

t
i

σ̂2
s

.

Model selection proceeds by computing AIC.S for all models under con-
sideration and by selecting the model with the smallest value of AIC.S.

When ρ(t) = t2, this criterion reduces to Takeuchi’s information crite-
rion TIC (Takeuchi, 1976) for normal data.

3.4 Extensions

3.4.1 AIC for use with MM-estimators

A further step in robust estimation uses the S-scale estimator in an M-
estimating equation. Let ρ1 : R→ R+ be a loss function such that ρ1(u) ≤
ρ0(u) for all u ∈ R and supu ρ1(u) = supu ρ0(u). The MM-regression
estimator θ̂mm is defined as the global minimum of f : Rp → R+, with

f(θ) =
1
n

n∑

i=1

ρ1

(
yi − θtxi

σ̂s

)
.

Thus,

θ̂mm = argmin
‖θ‖∈Rp

1
n

n∑

i=1

ρ1

(
yi − θtxi

σ̂s

)
.

Since MM-estimators are M-estimators, the following form of a robust AIC
version is obtained in a similar fashion as in Section 3.2.4,

AICρ.MM = 2
n∑

i=1

ρ̃d

(
Yi − θ̂t

mmxi

σ̂mm

)
+ 2 Trace(J−1

mm,nKmm,n). (3.13)

where ω̂mm = (θ̂mm,σ̂mm), θ̂mm and σ̂mm are MM-estimators, with em-
pirical information matrices gotten from the corresponding expressions for
S-estimators (see Section 3.3.2) by replacing ρ0 by ρ̃d, Jmm,n =

−∑n
i=1

∂ψ(yi|xi,θ̂mm)
∂ω̂mm

and Kmm,n =
∑n

i=1 ψ(yi|xi, θ̂mm)ψt(yi|xi, θ̂mm), with
ψ the derivative of ρ̃d with respect to ω̂mm. Again, the smallest such value
points towards the preferred model.
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Alternatively, in the same spirit as in Section 3.3.2 for robust estimators
of scale, we propose robust AIC versions based on M- and MM-estimators
as follows,

AIC.M = 2n log(σ̂m) + 2 Trace(J−1
m,nKm,n), (3.14)

AIC.MM = 2n log(σ̂mm) + 2 Trace(J−1
mm,nKmm,n). (3.15)

The model with the smallest AIC value indicates the preferred model. Our
simulation studies show that these robust scale based-criteria (3.14) and
(3.15) lead to a better performance as compared to the versions (3.9) and
(3.13) with the scale estimator re-computed for each model.

3.4.2 Using uniform asymptotic results

Omelka and Salibián-Barrera (2010) obtain the uniform consistency and
normality of the S- and MM-estimators over a contamination neighborhood
Hε0 . A difference with the (pointwise) asymptotic normality result is an
increased variance, which will be reflected in the penalty term of the AIC
when such asymptotic results are used. To make this more precise, let G0

and F0 be the cumulative distribution functions of X and u respectively.
The cumulative distribution of (Y, X) under model (3.1) is then given
by H0(y, x) = G0(x)F0(y − θt

0x). In the presence of outliers, we make
the assumption that the cumulative distribution function H of the data
belongs to a contamination neighborhood of H0 of size ε0. More precisely,

H ∈ Hε0 = {(1− ε)H0 + εH∗; ε ∈ [0, ε0]},

where H∗ is an arbitrary cumulative distribution function and ε0 < 0.5.
To define the penalty term, consider the functional form of the esti-

mators. For each θ ∈ Rp and H ∈ Hε0 , define a functional σ(., θ) : F ⊂
Hε0 → R+, and a scale function σ(H, θ) that satisfies

EH

[
ρ0

(
Y − θtX

σ(H, θ)

)]
= b,

where EH is the expectation computed with respect to H. The associated
functional S-estimators of location and scale satisfy
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θs(H) = arg infθ∈Rp σ(H, θ), and σs(H) = infθ∈Rp σ(H, θ).
For MM-estimators

θmm(H) = argmin
‖θ‖∈Rp

EH

[
ρ1

(
Y − θtX

σs(H)

)]
.

In practice ρ1 = ρ̃d is often a re-scaled version of ρ0 = ρd (Tukey’s bi-square
family loss function).

Omelka and Salibián-Barrera (2010) shown that
√

n(θ̂s − θs(H)) ∼
Np(0,ΣH), with ΣH = J−1

us KusJ
−1
us and

Kus = EH [ρ′20 (u1(H))
XXt

σs(H)2
] +

dH

bH

dt
H

bH
EH [(ρ0(u1(H))− b)2]

−EH [ρ′0(u1(H))(ρ0(u1(H))− b)Xt]
dt

H

σ2
s(H)

−dH

bH
EH [ρ′0(u1(H))(ρ0(u1(H))− b)

Xt

σs(H)
],

Jus = EH

[
ρ′′0

(
Y − θs(H)tX

σs(H)

)
XXt

σ2
s(H)

]
,

where u1(H) = (Y − θs(H)tX)/σs(H),

dH = EH

[
ρ′′0

(
Y − θs(H)tX

σs(H)

)
(Y − θs(H)tX)Xt

σs(H)2

]

bH = EH

[
ρ′0

(
Y − θs(H)tX

σs(H)

)
(Y − θs(H)tX)

σs(H)

]
.

For the calculations of the penalty term in the robust AIC, we use the
corresponding empirical information matrices, where Jus,n is equal to Js,n.
Hence, the difference lies in the asymptotic variance component Kus,n,
which results in a larger variance for uniform S-estimators by taking the
contamination neighborhoods into account. This leads immediately to a
robust AIC based on uniform asymptotic results for S-estimators,

AIC.US = 2n logσ̂s + 2 Trace(J−1
s,nKus,n), (3.16)

where, for example, ρ0 = ρd is Tukey’s bi-square loss function. For MM-
estimators we can use either the form with the ρd function, or the scale-
based version, leading to the following definitions.

AICρ.UMM = 2
n∑

i=1

ρ̃d

(
Yi − θ̂t

mmxi

σ̂mm

)
+ 2 Trace(J−1

umm,nKumm,n). (3.17)
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AIC.UMM = 2n log(σ̂mm) + 2 Trace(J−1
umm,nKumm,n). (3.18)

where σ̂mm is the MM-estimator of scale and the matrices Jumm,n and
Kumm,n are obtained in a similar fashion. Again, the smallest value of
AIC towards the preferred model.

3.5 Numerical results

3.5.1 Simulation settings

The settings for the simulation study are as follows. For the number of
variables p equal to either 6 or 10, the regression variables X1, . . . , Xp

are generated from a multivariate normal distribution with mean vector
µ = (1, . . . , p) and variance covariance matrices (i) a (p×p) identity matrix
for independent Xs and (ii) for dependent Xs, we used for p = 6 the matrix
Σ1 reflecting independence between the group of the first three variables
and the group of the last three variables, (iii) Σ2 which is a situation where
all six variables are correlated, and (iv) Σ3 for the case p = 10 showing
correlation within the group of the first six variables, within the group of
the last four variables, and a constant correlation between the groups.

To shorten the display, define Ir(a) as the square r × r matrix with
the values 1 on the diagonal and the constant value a on all off-diagonal
entries, and define 1r×s the matrix of dimension r × s consisting of values
1 everywhere. Then,

Σ1 =

(
I3(0.6) 0 · 13×3

0 · 13×3 I3(0.3)

)
, Σ2 =

(
I3(0.6) 0.4 · 13×3

0.4 · 13×3 I3(0.3)

)
,

Σ3 =

(
I6(0.6) 0.3 · 16×4

0.3 · 14×6 I4(0.4)

)
.

For the case p = 6 we define the true model using the first three vari-
ables X1, X2, X3. Hence, when using Σ1, the set of important variables
X1, X2, X3 is not correlated with the unimportant variables X4, X5, X6,
this is in contrast to the situation when using Σ2. For p = 10, the first
six variables appear in the true model, while the remaining four variables



66
Chapter 3 - A comparison of robust versions of the AIC based

on M, S and MM-estimators

are redundant. The chosen settings pose increased difficulty for variable
selection.

For the mean structure, we have used the functions m1(x) = 1 + x1 +
x2 + x3 for the setting with p = 6 and m2(x) = 1 +

∑6
j=1 xj for the

setting with p = 10, with x = (x1, . . . , xp). As error distribution we used
N(0, 0.72).

These values are kept fixed for all settings to reduce simulation vari-
ability. We took sample sizes equal to 50 and 100. Since the results were
quite similar, we here only show the results for the sample size equal to 50.
We have fitted all 2p − 1 possible models without interactions with these
p variables.

We compare nine different AIC versions in this simulation study: clas-
sical AIC based on maximum likelihood estimation assuming a normal
distribution (3.2), the scale based versions (3.12), (3.14)–(3.16), (3.18), as
defined in Sections 3.3.2 and 3.4, and the versions using the ρ-function
(3.9), (3.13), (3.17) of Sections 3.2.4 and 3.4.

To compute the robust M, S and MM-estimators, we used, respectively,
the functions rlm(), lmrob.S() and lmrob..M..fit() from the R libraries
MASS and robustbase. In order to investigate the robustness of the meth-
ods against outliers, we considered three situations: (i) vertical outliers
(outliers in the response only), (ii) good leverage points (outliers in the re-
sponse and the covariates), and (iii) bad leverage points (outliers in some
of the covariates only). For case (i) we randomly generated different per-
centages of outliers (0%, 5%, 10%, 20%, 30% and 40%) from N(50, 0.12)
for each of the simulated cases. For case (ii) we considered the different
percentages of outliers (0%, 5%, 10%, 20%, 30%) on the variables X1, X2

and X4 are generated from a N(100, 0.52) distribution, then generated Y

to get good leverage points. For case (iii) different percentages of outliers
(0%, 5%, 10%, 20%, 30%) on the variables X1, X2 and X4 are generated
from a N(100, 0.52) distribution. For each of these settings we simulated
1000 samples.



3.5. Numerical results 67

3.5.2 Simulation results

A summary of the simulation results is provided by reporting the propor-
tions of selected models that are

(C) Correct fit - The true model only.

(O) Overfit - Models containing all the variables in the true model plus
some more that are actually redundant.

(U) Underfit - Models with only a strict subset of the variables in the
true model.

(W) Wrong fit - All models that are not overfit (O), not a correct fit (C)
nor underfit (U). These are the models where some of the relevant
variables might be present (though not all of them) in addition to
some of the redundant variables.

We first consider the vertical outliers case with outlying response val-
ues. Table 3.1 and Table 3.2 show detailed simulation results for one of
the simulation settings with all AIC methods. As expected, the classical
AIC works better than the robust AICs for the data without outliers. The
classical AIC selects a large proportion of underfit or wrong fit models for
the data with outliers, while a higher proportion of overfit and correct fit
models are select by AIC.M with at most 20% contamination level. A
higher proportion of overfit and correct fit models are select by AIC.S,
AIC.US, AIC.MM and AIC.UMM. All of these methods work better for
the cases with a high contamination level of outliers and break down at
50% of outliers in the data; this holds for both dependent and independent
Xs. We present results for the AIC based on the ρ function in two ver-
sions: with known scale value (actually, estimated from the largest model
and kept fixed for all models) and with unknown scale (re-estimated for
each model).
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Table 3.1: Proportion of selected models from classical AIC, AIC with
M-estimation (AICρ.M), AIC with MM-estimation (AICρ.MM), AIC with
uniform MM-estimation (AICρ.UMM) for both known (estimated in the
largest model) and unknown scale σ. Data are generated with dependent
Xs, mean structure m1 for p = 6, error terms from a N(0, 0.72) distribu-
tion, and for sample size n = 50. We consider different percentages ε of
outliers generated from N(50, 0.12). S- and MM-estimators are computed
with 50% breakdown point.

ε Based on loss function (ρ)

σ known σ unknown

% AIC M MM M MM UMM

0 C 0,480 0.453 0.446 0.020 0.003 0.004

O 0,520 0.547 0.554 0.091 0.337 0.259

U 0,000 0.000 0.000 0.179 0.001 0.008

W 0,000 0.000 0.000 0.710 0.659 0.729

5 C 0,002 0.428 0.474 0.000 0.003 0.003

O 0,001 0.572 0.526 0.000 0.329 0.255

U 0,560 0.000 0.000 0.003 0.003 0.006

W 0,437 0.000 0.000 0.997 0.665 0.736

10 C 0,005 0.489 0.511 0.000 0.003 0.004

O 0,004 0.508 0.481 0.000 0.293 0.208

U 0,454 0.002 0.001 0.001 0.002 0.009

W 0,537 0.001 0.007 0.999 0.702 0.779

20 C 0,008 0.505 0.591 0.000 0.002 0.002

O 0,004 0.344 0.312 0.006 0.298 0.228

U 0,427 0.058 0.036 0.002 0.001 0.002

W 0,561 0.093 0.061 0.992 0.699 0.768

30 C 0,012 0.008 0.430 0.027 0.000 0.000

O 0,005 0.014 0.106 0.051 0.435 0.370

U 0,409 0.285 0.271 0.139 0.000 0.000

W 0,574 0.693 0.193 0.783 0.565 0.630

40 C 0,007 0.005 0.014 0.001 0.000 0.000

O 0,008 0.013 0.000 0.000 0.828 0.826

U 0,397 0.316 0.745 0.384 0.000 0.000

W 0,588 0.666 0.241 0.615 0.172 0.174
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Table 3.2: Proportion of selected models from classical AIC, the robust
scale versions: AIC.M, AIC.S, AIC.US, AIC.MM and AIC.UMM for un-
known scale σ. Data are generated with dependent Xs, mean structure m1

for p = 6, error terms from a N(0, 0.72) distribution, and for sample size
n = 50. We consider different percentages ε of outliers generated from
N(50, 0.12). S- and MM-estimators are computed with 50% breakdown
point.

ε Based on scale estimators

σ unknown

% AIC AIC.M AIC.S AIC.US AIC.MM AIC.UMM

0 C 0,480 0.360 0.163 0.173 0.164 0.178

O 0,520 0.552 0.808 0.795 0.816 0.799

U 0,000 0.038 0.005 0.007 0.005 0.007

W 0,000 0.050 0.024 0.025 0.015 0.016

5 C 0,002 0.366 0.214 0.217 0.216 0.219

O 0,001 0.543 0.761 0.754 0.763 0.756

U 0,560 0.041 0.004 0.005 0.005 0.006

W 0,437 0.050 0.021 0.024 0.016 0.019

10 C 0,005 0.407 0.233 0.239 0.236 0.241

O 0,004 0.522 0.741 0.734 0.740 0.734

U 0,454 0.032 0.005 0.006 0.005 0.006

W 0,537 0.039 0.021 0.021 0.019 0.019

20 C 0,008 0.406 0.417 0.417 0.420 0.419

O 0,004 0.440 0.564 0.563 0.562 0.562

U 0,427 0.069 0.005 0.006 0.005 0.006

W 0,561 0.085 0.014 0.014 0.013 0.013

30 C 0,012 0.032 0.647 0.646 0.647 0.644

O 0,005 0.029 0.343 0.344 0.343 0.346

U 0,409 0.431 0.005 0.005 0.005 0.005

W 0,574 0.508 0.005 0.005 0.005 0.005

40 C 0,007 0.018 0.906 0.906 0.906 0.906

O 0,008 0.044 0.075 0.075 0.075 0.075

U 0,397 0.453 0.014 0.014 0.014 0.014

W 0,588 0.485 0.005 0.005 0.005 0.005
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We observe from Table 3.1 and Table 3.2 that AIC based on the ρ

function with a supposed to be known scale (estimated from the largest
model) gives better results than when the scale is truly supposed to be
unknown. In the latter case, all unknown parameters, including the scale,
are treated as unknown and are estimated in the corresponding model,
rather than in the largest model. A comparison of the scale versions of
the AIC to those based on the ρ-function reveals that AIC.M, AIC.MM
and AIC.UMM work better than AICρ.M , AICρ.MM and AICρ.UMM .
For the rest of the paper we restrict to presenting the results using the
scale-based versions of the AIC.

Figure 3.1 shows the results of the proportion of selected correct fit (C)
and overfit (O) models by different model selection strategies. As expected,
the classical AIC works slightly better than the robust AICs for the data
without outliers. The classical AIC selects a small proportion of correct fit
and overfit models, when the data contain outliers in the response variable.
That means, the classical AIC method is ignoring some of the important
variables in the model. AIC.M selects a large proportion of correct fit and
overfit models until a 20% contamination level after which it gets influ-
enced by the outliers and further shows a behaviour similar to the classical
AIC. A higher proportion of correct fit models is selected by AIC.S for the
data set with outliers. This method works fine also for the cases with a
high contamination level of outliers and breaks down when there are 50%
of outliers in the data. Figure 3.1 (a) and (b) presents a summary of the
results for dependent Xs when using Σ2 and for independent Xs respec-
tively. It is observed that AIC.M selects a higher proportion of correct fit
and overfit models for the independent case than for the dependent case.
AIC.S selects a high proportion of correct fit and overfit models for both
dependent and independent cases.
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Figure 3.1: Proportion of selected models from correct fit (C) and overfit
(O) from classical AIC (L), AIC based on M-estimators (M) and AIC based
on S-estimators (S) for data generated with mean structure m1 for p = 6,
error terms from N(0, 0.72), sample size n = 50 and different percentages
of outliers generated from N(50, 0.12) for two different cases (a) dependent
Xs with estimators with 50% breakdown point, (b) independent Xs with
estimators with 50% breakdown point.
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Figure 3.2: Proportion of selected models from correct fit (C) from clas-
sical AIC (solid line), AIC based on M-estimators (dot-dashed line), AIC
based on S-estimators with 50% breakdown point (dashed line) and AIC
based on S-estimators with 30% breakdown point (dotted line) for data
generated with mean structure m1 for p = 6, ε ∼ N(0, 0.72), sample size
n = 50 and different % outliers generated from N(50, 0.12) for (a) depen-
dent Xs as in Σ2 and (b) independent Xs.



3.5. Numerical results 73

The proportion of correct fit models from the classical AIC, and from
AIC based on M- and S- estimators is given in Figure 3.2 (a) and (b) for
dependent Xs when using Σ2 and for independent Xs, respectively.

For small percentages of outliers (10%–20%), the AIC.S method (when
tuned to a 50% breakdown point) is not doing well in selecting the correct
model. Therefore, we re-compute AIC.S, now tuned to have a 30% break-
down point for the estimators. The corresponding results are plotted in
Figure 3.2 (a) and (b). We observe that this significantly helps for the case
of 20% outliers, resulting in a high proportion of correct models selected
by AIC.S. When we consider the proportions of both overfit and correct fit
models together, then AIC.S is performing well for any percentage of out-
liers with both considered breakdown points. We also computed AIC.US,
AIC.MM and AIC.UMM in this simulation setting and observed that the
results are similar to those of AIC.S.

A main message to be learned from this simulation study is that AIC
based on M-estimators using expression (3.9) with the scale estimator com-
puted in each model separately, rather than at the largest model, performs
less well than the AIC.M based on a robust scale estimator. The AIC
versions based on robust scale estimators are preferable. For best per-
formance, the breakdown point of the estimators should be considered in
relation with the proportion of outliers in the data to avoid underfitting.

More detailed simulation results are shown in Table 3.3 and Table 3.4.
Again, as expected, the classical AIC works better than the robust AICs
for the data without outliers. The classical AIC selects a large proportion
of underfit or wrong fit models for the data with outliers, while a higher
proportion of overfit and correct fit models are select by AIC.S, AIC.US,
AIC.MM and AIC.UMM. All of these methods work better for the cases
with a high contamination level of outliers and break at 50% of outliers in
the data; this holds for both dependent and independent Xs. A further
detailed investigation about this issue is reported at the end of this section.
AIC based on M-estimators works fine for the data with small (≤ 20%)
contamination level. The S estimation based criteria AIC.S and AIC.US
give similar results in most of the cases in Table 3.3 and Table 3.4.
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Table 3.3: Proportion of selected models from classical AIC (AIC), AIC
with M-estimation (M), AIC with S-estimation (S), AIC with uniform
S-estimation (US), AIC with MM-estimation (MM) and AIC with uni-
form MM-estimation (UMM), for data generated with dependent Xs, mean
structure m2 for p = 10, error terms from a N(0, 0.72) distribution, and for
sample size n = 50. We consider different % ε of outliers generated from
N(50, 0.12). S- and MM- estimators are computed with 50% breakdown
point.

ε Dependent Xs

% AIC AIC.M AIC.S AIC.US AIC.MM AIC.UMM

0 C 0.424 0.256 0.055 0.053 0.069 0.077

O 0.576 0.516 0.600 0.592 0.795 0.780

U 0.000 0.006 0.006 0.006 0.001 0.001

W 0.000 0.222 0.339 0.349 0.135 0.142

5 C 0.001 0.259 0.079 0.069 0.106 0.099

O 0.000 0.517 0.627 0.620 0.752 0.750

U 0.278 0.007 0.004 0.004 0.002 0.002

W 0.721 0.217 0.290 0.307 0.140 0.149

10 C 0.000 0.281 0.114 0.115 0.137 0.141

O 0.000 0.505 0.633 0.620 0.739 0.730

U 0.322 0.016 0.004 0.005 0.001 0.001

W 0.678 0.198 0.249 0.260 0.123 0.128

20 C 0.000 0.273 0.236 0.235 0.263 0.250

O 0.000 0.315 0.632 0.625 0.649 0.657

U 0.310 0.048 0.000 0.001 0.002 0.003

W 0.690 0.364 0.132 0.139 0.086 0.090

30 C 0.000 0.001 0.573 0.568 0.576 0.575

O 0.000 0.003 0.364 0.364 0.363 0.363

U 0.318 0.320 0.006 0.006 0.007 0.007

W 0.682 0.676 0.057 0.062 0.054 0.055

Based on the results from Table 3.3 and Table 3.4, for dependent Xs
the proportion of overfit models based on AIC.S and AIC.US is larger than
for the case of independent Xs and based on AIC.MM and AIC.UMM is
smaller than for the case of independent Xs.
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Table 3.4: Proportion of selected models from classical AIC, AIC with M-
estimation, AIC with S-estimation, AIC with uniform S-estimation, AIC
with MM-estimation and AIC with uniform MM-estimation, for data gen-
erated with independent Xs, mean structure m2 for p = 10, error terms
from a N(0, 0.72) distribution, and for sample size n = 50. We consider
different percentages ε of outliers generated from N(50, 0.12). S- and MM-
estimators are computed with 50% breakdown point.

ε Independent Xs

% AIC AIC.M AIC.S AIC.US AIC.MM AIC.UMM

0 C 0.404 0.288 0.029 0.030 0.069 0.074

O 0.596 0.675 0.399 0.368 0.861 0.851

U 0.000 0.000 0.016 0.006 0.001 0.001

W 0.000 0.037 0.556 0.596 0.069 0.074

5 C 0.007 0.326 0.049 0.042 0.086 0.086

O 0.009 0.635 0.427 0.394 0.839 0.826

U 0.223 0.003 0.013 0.013 0.000 0.000

W 0.761 0.036 0.511 0.551 0.075 0.088

10 C 0.001 0.341 0.078 0.079 0.150 0.149

O 0.000 0.616 0.489 0.463 0.801 0.801

U 0.264 0.004 0.007 0.003 0.002 0.002

W 0.735 0.039 0.426 0.455 0.047 0.048

20 C 0.000 0.371 0.211 0.205 0.253 0.252

O 0.000 0.455 0.591 0.574 0.713 0.714

U 0.026 0.025 0.005 0.002 0.000 0.000

W 0.974 0.149 0.193 0.219 0.034 0.034

30 C 0.000 0.002 0.588 0.576 0.604 0.597

O 0.000 0.002 0.392 0.401 0.389 0.396

U 0.283 0.271 0.000 0.000 0.000 0.000

W 0.717 0.725 0.020 0.023 0.007 0.007

Since Table 3.3 and Table 3.4 shows that the proportion of selected cor-
rect fit models is small for the cases with 5%, 10% and 20% contamination
when estimators with 50% breakdown point are used, we recompute the
AIC.S, AIC.US, AIC.MM and AIC.UMM for the cases with 0%, 5%, 10%,
20%, 30% contamination level, now with 30% breakdown point estimators.
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These results are presented in Table 3.5 and Table 3.6. The AIC based
on MM-estimators selects higher proportions of correct fit than the AIC
based on S-estimators for the data without outliers. It clearly shows that
for the case of 20% contamination, the proportion of selected correct fit
models is now much larger for the methods AIC.S, AIC.US, AIC.MM and
AIC.UMM.

Table 3.5: Proportion of selected models from classical AIC, AIC with M-
estimation, AIC with S-estimation, AIC with uniform S-estimation, AIC
with MM-estimation and AIC with uniform MM-estimation, for data gen-
erated with dependent Xs, mean structure m2 for p = 10, error terms from
a N(0, 0.72) distribution, and for sample size n = 50. We consider dif-
ferent percentages ε of outliers generated from N(50, 0.12). S- and MM-
estimators are computed with a 30% breakdown point.

ε Dependent Xs

% AIC AIC.M AIC.S AIC.US AIC.MM AIC.UMM

0 C 0.424 0.256 0.057 0.036 0.272 0.267

O 0.576 0.516 0.601 0.257 0.707 0.710

U 0.000 0.006 0.007 0.048 0.001 0.001

W 0.000 0.222 0.335 0.659 0.020 0.022

5 C 0.001 0.259 0.342 0.340 0.338 0.348

O 0.000 0.517 0.646 0.638 0.655 0.643

U 0.278 0.007 0.001 0.000 0.000 0.000

W 0.721 0.217 0.011 0.022 0.007 0.009

10 C 0.000 0.281 0.451 0.461 0.455 0.461

O 0.000 0.505 0.546 0.533 0.538 0.532

U 0.322 0.016 0.000 0.000 0.000 0.000

W 0.678 0.198 0.003 0.006 0.007 0.007

20 C 0.000 0.273 0.820 0.818 0.817 0.818

O 0.000 0.315 0.177 0.179 0.180 0.179

U 0.310 0.048 0.001 0.001 0.001 0.001

W 0.690 0.364 0.002 0.002 0.002 0.002

30 C 0.000 0.001 0.000 0.000 0.000 0.000

O 0.000 0.003 0.001 0.003 0.000 0.000

U 0.318 0.320 0.399 0.380 0.405 0.381

W 0.682 0.676 0.600 0.617 0.595 0.619
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Table 3.6: Proportion of selected models from classical AIC, AIC with M-
estimation, AIC with S-estimation, AIC with uniform S-estimation, AIC
with MM-estimation and AIC with uniform MM-estimation, for data gen-
erated with independent Xs, mean structure m2 for p = 10, error terms
from a N(0, 0.72) distribution, and for sample size n = 50. We consider
different percentages ε of outliers generated from N(50, 0.12). S- and MM-
estimators are computed with a 30% breakdown point.

ε Independent Xs

% AIC AIC.M AIC.S AIC.US AIC.MM AIC.UMM

0 C 0.404 0.288 0.028 0.031 0.251 0.261

O 0.596 0.675 0.398 0.369 0.740 0.730

U 0.000 0.000 0.017 0.005 0.000 0.000

W 0.000 0.037 0.557 0.595 0.009 0.009

5 C 0.007 0.326 0.310 0.317 0.318 0.329

O 0.009 0.635 0.668 0.664 0.679 0.668

U 0.223 0.003 0.000 0.000 0.000 0.000

W 0.761 0.036 0.022 0.019 0.003 0.003

10 C 0.001 0.341 0.441 0.442 0.439 0.441

O 0.000 0.616 0.558 0.558 0.561 0.559

U 0.264 0.004 0.000 0.000 0.000 0.000

W 0.735 0.039 0.001 0.000 0.000 0.000

20 C 0.000 0.371 0.804 0.804 0.803 0.804

O 0.000 0.455 0.196 0.196 0.197 0.196

U 0.026 0.025 0.000 0.000 0.000 0.000

W 0.974 0.149 0.000 0.000 0.000 0.000

30 C 0.000 0.002 0.001 0.000 0.001 0.000

O 0.000 0.002 0.004 0.005 0.002 0.003

U 0.283 0.271 0.265 0.181 0.275 0.181

W 0.717 0.725 0.730 0.814 0.722 0.816

Next, we present results of simulated data with outliers on the ex-
planatory variables, in addition to outliers in the response variable (see
the description of cases (ii) and (iii) above). The results are presented in
Table 3.7. We have fitted all possible models with six explanatory variables
in this setting.
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Table 3.7: Proportion of selected models from classical AIC, AIC with
M-estimation, S-estimation and MM-estimation for data generated with
dependent Xs, mean structure m1(x) for p = 6, error terms from a
N(0, 0.72), and for sample size n = 50. Considered different % ε of out-
liers generated for Y , X1, X2 and X4 variables. S- and MM- estimators
are computed with a 50% breakdown point.

ε Bad leverage points Good leverage points

% AIC M S MM % AIC M S MM

0 C 0.510 0.329 0.161 0.168 0 0.510 0.329 0.161 0.168

O 0.490 0.561 0.814 0.812 0.490 0.561 0.814 0.812

U 0.000 0.041 0.003 0.004 0.000 0.041 0.003 0.004

W 0.000 0.069 0.022 0.016 0.000 0.069 0.022 0.016

5 C 0.539 0.325 0.186 0.188 5 0.540 0.326 0.186 0.188

O 0.460 0.626 0.771 0.794 0.460 0.626 0.771 0.794

U 0.000 0.012 0.005 0.004 0.000 0.011 0.005 0.004

W 0.001 0.037 0.038 0.014 0.000 0.037 0.038 0.014

10 C 0.520 0.345 0.153 0.154 10 0.534 0.358 0.186 0.192

O 0.479 0.624 0.831 0.840 0.466 0.581 0.795 0.800

U 0.000 0.009 0.001 0.001 0.000 0.016 0.001 0.000

W 0.001 0.022 0.000 0.005 0.000 0.045 0.018 0.008

20 C 0.524 0.371 0.164 0.175 20 0.540 0.365 0.176 0.176

O 0.475 0.586 0.818 0.814 0.460 0.560 0.804 0.809

U 0.000 0.010 0.003 0.000 0.000 0.018 0.006 0.004

W 0.001 0.033 0.000 0.011 0.000 0.057 0.014 0.011

30 C 0.545 0.329 0.172 0.174 30 0.536 0.323 0.173 0.174

O 0.455 0.602 0.791 0.799 0.464 0.575 0.788 0.796

U 0.000 0.015 0.003 0.004 0.000 0.031 0.008 0.004

W 0.000 0.054 0.034 0.023 0.000 0.071 0.031 0.026

We simulated data with different percentages of outliers in the ex-
planatory variables. We compute AIC values from these six different AIC
methods. Based on these results in 3.7, we observe that the classical AIC
method selects a large proportion of overfit and correct fit models for all
cases. Therefore, based on this simulation results, it seems valid to use
the classical AIC method for the cases with outliers only on the explana-
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tory variables. Also, AIC based on S, uniform S, MM and uniform MM-
estimation select a large proportion of overfit and correct fit models for all
cases.

To investigate in more details the behaviour of the criteria when the
percentage of outliers increases, we checked the scale estimators of the
models for both M and S-estimation. In particular, we computed the
average over 1000 simulation samples of scale estimates of each of the
models in the simulation setting for data generated with dependent Xs,
mean structure m1 for p = 6, error terms from a N(0, 0.72) distribution,
and for sample size n = 50. We considered three categories of selected
models (i) correct fit, (ii) overfit and (iii) underfit & wrong fit. Table 3.8
presents the summary results of scale estimators based on the M- and S-
estimation method.

Table 3.8: Average of scale estimates from M-estimation (Scale.M) and
S-estimation (Scale.S) over 1000 simulated samples of all models for data
generated with dependent Xs, mean structure m1 for p = 6, error terms
from a N(0, 0.72) distribution, and for sample size n = 50. We consider
different percentages ε of outliers generated from N(50, 0.12).

ε Correct fit Overfit Underfit & Wrong fit

% Lower Upper Range Lower Upper Range

Scale.M 0 0.667 0.636 0.658 0.022 0.930 2.504 1.573

10 0.783 0.759 0.775 0.016 1.102 2.726 1.623

20 1.125 1.160 1.432 0.271 1.543 3.689 2.146

30 3.949 41.909 43.798 1.889 23.943 43.691 19.748

Scale.S 0 0.677 0.653 0.670 0.017 0.939 2.474 1.535

10 0.808 0.801 0.806 0.006 1.135 2.861 1.726

20 0.994 1.002 1.022 0.020 1.403 3.442 2.040

30 1.316 1.348 1.426 0.077 1.825 4.422 2.597

Table 3.8 shows, first, that the scale estimates increase with the per-
centage of outliers. Second, the cases with 0% and 10% outliers result on
average in a larger scale estimate of correctly fitted models than for models
that are overfit; indeed the table shows that the average value for correct
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fits is larger than the upper value over the simulation results of the overfit
models. In such cases, the model selection criteria AIC based on M- and
S- estimation will often select an overfit model, since a small scale estimate
is preferable since we are minimizing the AIC values. On the other hand,
for data with a larger contamination level of outlying cases (20% and 30%
outliers) the averaged scale estimates are the smallest for the correctly
fitted models. Therefore AIC based on M- and S-estimation will tend to
select the correctly fitted model more often. The observed ranges of the
scale estimates over the simulation study for the overfit models are smaller
than for the underfit and wrongly fitted models, and both ranges increase
with the percentage of outliers. The effect of the outliers on the penalty
part of the various AIC is seen to be non-influential. As a comparison, we
redid the simulation exercise (results are in Table 3.9) with using for the
penalty the number of parameters in the model (which is not influenced
by the number of outliers) and came to the same conclusion. It is the be-
haviour of the robust scale estimators in misspecified models that explains
the obtained results for model selection.

Additionally, we have considered the proposed AIC based on robust
scale M- and S-estimators with different penalty terms and compared
them with classical AIC and generalized information criterion based on
S-estimators(GIC.S). We presented the results in Table 3.9 from the simu-
lation study, Data are generated with dependent Xs, mean structure m1 for
p = 6, error terms from a N(0, 1) distribution, and for sample size n = 50.
We consider different percentages ε of outliers generated from N(100, 0.52).
We denote the robust scale versions of AIC based on M-estimator as AIC.M
in (3.14) and based on S-estimator as AIC.S in (3.12). Here we used the
penalty term is full matrices with dimension (p+1)× (p+1) in (3.14) and
(3.12) and denoted AIC.M1 and AIC.S1 respectively. We used the penalty,
the number of parameters in the model in the robust scale versions of AICs
based on M- and S-estimators as in (3.14) and (3.12), denote AIC.M2 and
AIC.S2 respectively. Table 3.9 shows that AIC.M1 and AIC.M2 are not
much difference than AIC.M.
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Table 3.9: Proportion of selected models. Data are generated with de-
pendent Xs, mean structure m1 for p = 6, n = 50, error terms from a
N(0, 1). Different percentages ε of outliers from N(100, 0.52). S-estimators
are computed with 50% breakdown point.

0% 10% 20% 30% 40%

AIC C 0.520 0.004 0.004 0.005 0.008

O 0.480 0.004 0.009 0.009 0.008

U 0.000 0.407 0.398 0.395 0.396

W 0.000 0.585 0.589 0.591 0.588

AIC.M C 0.254 0.277 0.260 0.013 0.014

O 0.384 0.370 0.283 0.012 0.042

U 0.117 0.147 0.219 0.454 0.452

W 0.245 0.206 0.238 0.521 0.492

AIC.M1 C 0.242 0.136 0.172 0.013 0.014

O 0.379 0.584 0.462 0.015 0.043

U 0.118 0.046 0.093 0.434 0.446

W 0.261 0.234 0.273 0.538 0.497

AIC.M2 C 0.139 0.144 0.163 0.014 0.011

O 0.501 0.529 0.460 0.018 0.062

U 0.063 0.060 0.093 0.404 0.440

W 0.297 0.267 0.284 0.564 0.487

AIC.S C 0.141 0.194 0.352 0.574 0.654

O 0.695 0.638 0.474 0.298 0.046

U 0.023 0.038 0.065 0.074 0.256

W 0.141 0.130 0.109 0.054 0.044

AIC.S1 C 0.138 0.192 0.349 0.572 0.660

O 0.699 0.637 0.475 0.300 0.046

U 0.021 0.039 0.064 0.073 0.250

W 0.142 0.132 0.112 0.055 0.044

AIC.S2 C 0.254 0.342 0.484 0.652 0.577

O 0.576 0.489 0.338 0.173 0.027

U 0.046 0.063 0.088 0.121 0.361

W 0.124 0.106 0.090 0.054 0.035

GIC.S C 0.135 0.197 0.351 0.569 0.658

O 0.718 0.643 0.494 0.316 0.047

U 0.017 0.032 0.053 0.062 0.251

W 0.130 0.128 0.102 0.053 0.044
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The scale version of AIC based on S-estimator with different penalty
terms gives similar results in Table 3.9. But the number of parameters
in the model is not influenced by the number of outliers in the data. We
presented R-code for all AICs with different penalty terms in section 5.2.

3.5.3 Employment data in East-central Europe

We used the data set coded ZA3132 from the website http://zacat.gesis.org
/webview/index.jsp, named “The evaluation of programs to assist young
unemployed in post communist East-Central Europe 1996-1998”. We used
a subset of this dataset consisting of the response variable, the current
monthly earnings (USA $) during 1996-1998, and 16 explanatory variables
(see below for the details). Cases with missing values were removed from
the resulting dataset, leading to the subset of 114 observations that we
used here.

The explanatory variables are as follows: X1 age; X2 gender; X3 mari-
tal status (1-single,2-married/cohabiting, 3-other); X4 highest level of ed-
ucation (1-less than elementary school, 2-elementary school, 3-vocational
school, 4-professional or technical school, 5-high school/lycee/ gymna-
sium/grammar school, 6-college, 7-university); X5 age completed full-time
education; X6 the subject or field specialized in (0-nothing in particular,
1-construction & related, 2-vehicle & machinery repairs, 3-engineering, 4-
catering & hospitality, 5-personal & consumer services, 6-health & related,
7-teaching, 8-professional services, 9-other academic subjects); X7 number
of proper jobs since leaving school; X8 number of holidays away from home
during the last 12 months; X9 amount of time for family; X10 amount
of time for friends; and X11 amount of time for yourself (1-not enough,
2-about right, 3-too much); X12 education matches work experience (1-
yes(totally), 2-yes(partly), 3-not at all, 4-no work experience); X13 use of
motor car; X14 use of satellite or cable TV; X15 use of personal computer;
X16 use of mobile telephone.

The variable X4, highest level of education might be an endogenous
variable in which case a traditional linear regression model is no longer
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valid. The endogeneity problem can be solved by introducing instrumental
variables (see, e.g. Johnston and DiNardo, 1997). We took X5, the age at
completion of the full-time education, as an instrumental variable since the
variables X4 and X5 are highly correlated (corr(X4, X5) = 0.6) while the
correlation between X5 and the response variable is small (corr(Y, X5) =
0.06). We used a two-stage least squares method to fit the regression
models for these data. In stage (1), we fit a regression model of X4 on
the instrumental variable X5 to obtain the fitted values X̂4. Because the
variable X4 is an ordered categorical variable, we used a proportional odds
logistic regression model in stage (1). Hereby we used the function polr()

in R. In stage (2) we regress Y on all other Xs and X̂4. We use the model
selection procedure in stage (2).

Using standardized residuals plots, it turns out that 8 response val-
ues (7%) are outside the range (−2, 2) and can be considered as vertical
outliers. We used the chi-square plot to detect multivariate outliers as in
Garrett (1989). In such a plot the ordered robust Mahalanobis distance
of the data is plot against the quantiles of the chi-squared distribution.
This method applied to the continuous covariates X1 and X8 showed that
6 observations (5%) can be considered as leverage points. We therefore set
the S and MM estimation methods to use a 30% breakdown point.

Table 3.10: Employment data in East-central Europe. The selected ex-
planatory variables from the classical AIC, AIC with M-estimation, S-
estimation and MM-estimation, tuned for a 30% breakdown point.

Criteria Selected variables

Best model Second best model Third best model

AIC X2,X3,X15,X16 X3,X15,X16 X2,X14,X15,X16

AIC.M X3,X4,X8,X10,X11 X3,X4,X6,X10,X12, X1,X4,X12,X14, X15

X15,X16

AIC.S X3,X4,X11,X12,X14, X3,X4,X11,X12, X3,X4,X12,X14,

X15,X16 X14,X16 X15,X16

AIC.MM X3,X4,X11,X12,X14, X3,X4,X11,X12, X3,X4,X12,X14,

X15,X16 X14,X16 X15,X16
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We have fitted all 215 models with a combination of any of these ex-
planatory variables and computed several AIC values for each model. The
best three selected models based on each AIC method are given in Ta-
ble 3.10.

The classical AIC method selects a model with four explanatory vari-
ables, while AIC based on M-estimation selects a model with five variables.
For classical AIC method, the number of selected variables is lower than
for the other criteria. This is in line with the simulation results where we
observed that classical AIC has the tendency to select underfit models in
the presence of outliers.

The proposed methods based on S- and MM-estimators select the same
best model with seven variables. Variables X3 marital status, X4 highest
level of education and X11 amount of time for yourself, coincide with the
selected variables from the M-estimation method. In addition, the S and
MM-based criteria select X12 education matches work experience; X14 use
of satellite or cable TV; X15 use of personal computer; and X16 use of
mobile telephone to explain the current monthly earnings.

Table 3.11: Employment data in East-central Europe with outliers re-
moved. The selected explanatory variables from the classical AIC, AIC
with M-estimation, S-estimation and MM-estimation, tuned for a 30%
breakdown point.

Criteria Selected variables

Best model Second best model Third best model

AIC X2,X3,X7,X8, X2,X3,X7,X8,X10, X2,X3,X7,X10,

X15,X16 X15,X16 X15,X16

AIC.M X1,X3,X4,X8,X10 X3,X7,X9,X10,X11 X3,X4,X8,X10,X11,

,X11,X12,X15 X12,X14, X15

AIC.S X3,X4,X10,X11, X3,X4,X10,X11,X12, X3,X6,X7,X9,X12,

X12,X15 X15,X16 X15,X16

AIC.MM X3,X4,X10,X11, X3,X4,X10,X11,X12, X3,X6,X7,X9,X12,

X12,X15 X15,X16 X15,X16

We have refitted all 215 models with a combination of any of these ex-
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planatory variables for the cleaned data (outliers removed) and computed
several AIC values for each model. The best three selected models based
on each AIC method are given in Table 3.11.

The classical AIC method now also selects models with more variables
than when the outliers were still present (Table 3.10), indeed the three
best models contain six or seven explanatory variables. Also AIC based
on M-estimation selects a model with eight variables as the best one.

3.5.4 Hofstedt’s highway data

We have used Hofstedt’s highway data that are available from the R li-
brary alr3 as data(highway) (see also Weisberg, 2005). In this dataset
there are 39 observations on several highway related measurements. The
response variable is the accident rate per million vehicle miles in the year
1973 and there are 11 potential explanatory variables:

X1 Average daily traffic count(1000’s); X2 Truck volume as a percent-
age of the total volume; X3 Number of lanes of traffic; X4 Number of access
point per mile; X5 Number of signalized interchanges/mile; X6 Number
of freeway-type interchanges/mile; X7 The speed limit in 1973; X8 The
length of the segments in miles; X9 The lane width in feet; X10 Width
in feet of outer shoulder on the roadway; X11 An indicator of the type of
roadway or the source of funding for the road.

We have fitted all 211 possible models with a combination of any of
these covariates and computed several AIC values for each model. We have
checked the outliers in this data set using studentized deleted residuals
criteria and found that the absolute value of the standardized residuals
is larger than the Bonferroni critical value of the t distribution, t(1 −
α/2n; n − p − 1) = t(1 − 0.1/78; 39 − 11 − 1) ' 3.3 for 4 observations.
These observations (10% of the data) are considered as vertical outliers.
We used the chi-square plot to detect multivariate outliers as in Garrett
(1989). This method detects 14 observations as outliers in Xs in this data.
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Table 3.12: Highway data. The selected explanatory variables from best
three models based on classical AIC, AIC with M-estimation, S-estimation
and MM-estimation using estimators with 50% breakdown point.

Criteria Selected variables

Best model Second best model Third best model

AIC X4,X5,X7,X8 X2,X4,X7,X8 X4,X7,X8

AIC.M X5,X7,X11 X5,X6,X7 X3,X5,X7,X11

AIC.S X2,X3,X5,X6,X7, X1,X2,X4,X5,X9, X4,X5,X8,X11

X9,X10 X10,X11

AIC.MM X3,X4,X8,X9,X10 X4,X5,X8,X11 X1,X3,X4,X5,X8,X11

The classical AIC selects a model with four explanatory variables, see
Table 3.12, and thus omits seven potential explanatory variables. The
robust model selection strategies as given in this chapter select models
with more variables. AIC based on M-estimation selects a model with
three variables. For this example, two of the selected variables coincide
with those of AIC, the other one is different. All of the best five models
based on AIC and AIC.M contain only few variables (3, 4 or 5 variables
based on AIC and 4 or 5 variables based on AIC.M).

Table 3.13: Highway data. The selected explanatory variables from high-
est ranked models based on AIC.S, AIC.US, AIC.MM and AIC.UMM using
estimators with 30% breakdown point.

Variables in the selected models Number of Rank of AIC

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 variables S US MM UMM

0 1 1 0 1 1 1 1 0 0 1 7 1 1 1101 1059

1 1 0 0 1 0 1 0 1 1 1 7 2 2 684 636

0 1 1 1 0 0 0 1 1 0 0 5 3 3 216 195

0 0 1 1 0 0 0 1 1 1 1 6 4 4 1 1

0 0 0 1 1 0 0 1 0 0 1 4 5 5 2 2

0 0 1 1 0 0 0 1 1 1 0 5 6 7 3 4

1 0 1 1 1 0 0 1 0 0 1 6 7 9 4 6

0 0 1 1 1 0 0 1 0 0 1 5 8 6 5 3
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Table 3.13 presents the five best models as ranked by their AIC values,
using AIC with S, uniform S, MM and uniform MM-estimators. The corre-
sponding ranks given by AIC and AIC.M are large for these same models,
indicating low preference. AIC.S and AIC.US select the best model with
seven variables, this is for the situation where the breakdown point of the
estimators is tuned to 30% to accommodate the about 10% of outliers in
the data. The model selected by AIC.MM and AIC.UMM corresponds to
the 4th ranked model by AIC.S and contains six variables.

3.6 Discussion

In this chapter the definition of the AIC is extended to be used with S-
and MM-estimators.

It turns out that the classical (non-robust) AIC works well for data sets
with only few outlying observations, and with data where the outliers are
only in the explanatory variables. The use of AIC based on M-estimation
is not encouraged for data sets with high contamination levels of outliers,
based on our simulation results (this holds for all considered variants of
the criterion), The versions of AIC that use robust scale estimators arising
from S- and MM-estimators perform well in the comparison. For these
methods, the breakdown point of the estimation method should be tuned
in accordance with the percentage of outliers in the data. These methods
are particularly useful when there are outliers in the response variable.

In line with the known properties of the non-robust AIC, these versions
of AIC based on S- and MM-estimators, have the tendency to slightly over-
fit, which ensures that no important variables are lost when this method is
used as a screening step to indicate potential important variables in a full
analysis of the data. In our simulation studies, the average number of re-
dundant variables in overfitted models was between 2 and 3. The proposed
AIC method based on S- and MM-estimators gave good results both for
independent and dependent explanatory variables, for both sample sizes
considered as well as for the different numbers of true and redundant vari-
ables in the simulated models. While this is a limited simulation study
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only, we expect the conclusions to hold to similar modelling situations as
well.

While our study has focussed on the AIC as a variable selection tool,
it might be of interest to extend other robust variable selection methods
that currently mainly deal with M-estimators, to more advanced robust
estimation methods, such as S- or MM-estimators.



Chapter 4

Robust estimation and a

conditional Akaike information

criterion for linear mixed models

We study model selection on both the fixed and random effects in the
setting of linear mixed models that are estimated using outlier robust S-
estimators. The derived marginal and conditional information criteria are
in the style of Akaike’s information criterion but avoid the use of a fully
specified likelihood by a suitable S-estimation approach that minimizes a
scale function. We derive the appropriate penalty terms and provide an
implementation using R. The setting of semiparametric additive models fit
with penalized regression splines, attractive because of its link with mixed
models, is worked out as a specific application. Simulated data and real
data examples illustrate the effectiveness of the proposed criteria.

89
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4.1 Introduction

We consider mixed linear models of the form Y = Xβ+Zu+ε, where u and
ε are independent random variables, not necessarily normally distributed.
Outlying values may be present in either u or ε. Variable selection in
mixed linear models by means of the Akaike information criterion (AIC,
Akaike, 1973) which is defined as minus twice the value of the maximized
log-likelihood of the model plus twice the number of estimated parame-
ters in the model, may be done using the marginal log-likelihood of Y .
Vaida and Blanchard (2005) have shown that in linear mixed models the
resulting marginal AIC is not appropriate for variable selection when the
random effects are of interest. They proposed the conditional Akaike in-
formation which uses the conditional likelihood of the response Y given
the random effects u. The penalty term in the conditional AIC is related
to the effective degrees of freedom of a linear mixed model (Hodges and
Sargent, 2001). Liang et al. (2008) have proposed a corrected conditional
AIC that accounts for the estimation of the variance components. Greven
and Kneib (2010) study the theoretical properties of both the marginal and
the conditional corrected AIC for the selection of variables in linear mixed
models, and they provide a computationally feasible penalty term. All
of the mentioned papers use maximum likelihood or restricted maximum
likelihood for estimation.

In this chapter we derive a marginal and conditional AIC for linear
mixed models that no longer requires likelihood based estimation methods.
In particular, we work with robust S-estimators that can accommodate the
presence of outliers in (i) the response values, (ii) the random effects. We
derive an expression for the penalty term that explicitly takes the estima-
tion of the variance components into account and that can be computed
in a straightforward way.
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4.2 S-estimation in linear mixed models

We model the vector of observations for the ith subject, i = 1, . . . , n, as

Yi = Xiβ +
r∑

j=1

Zijuij + εi, (4.1)

where Yi has length mi, Xi is a mi×p design matrix of fixed effects, Zij is a
mi×qj design matrix for the random effects. The p-vector β is fixed, while
the qj-vectors uij are random with mean zero and variance matrix Gj . The
random error εi has mean zero, and its variance matrix is denoted by Ri.
The total number of observations is equal to N =

∑n
i=1 mi, resulting in

vectors Y and ε of length N , a N × p design matrix X = (X1, . . . , Xn)t

for the fixed effects, a mi × q design matrix Zi = (Zi1, . . . , Zir) for the
random effects, ui = (ut

i1, . . . , u
t
ir)

t is a q × 1 vector. We denote Z =
diag(Z1, . . . , Zn), Z is a N ×nq, u = (ut

1, . . . , u
t
n)t is a nq× 1 vector, Gi =

diag(G1, . . . , Gr), G = diag(G1, . . . , Gn), and let q =
∑r

j=1 qj . We assume
that the set of random effects {uij ; i = 1, . . . , n, j = 1, . . . , r} and the set
of error terms {ε1, . . . , εn} are independent, that Var(uij) = Gj = σ2

j Iqj

and that Var(ε) = R = σ2
0IN , with IN the identity matrix with N rows.

We define Ri = σ2
0Imi and V = Var(Y ) = R + ZGZt. In the balanced

case where all mi = m, we define the m ×m matrices Var(Yi) = V0, and
Var(εi) = R0 = σ2

0Im, for i = 1, . . . , n, j = 1, . . . , r.
The most frequent assumption in linear mixed models is that both the

errors ε and the random effects u have Gaussian distributions. Outliers,
extreme observations that are unlike most of the other observations in the
sample, may occur for any of the observed random effects as well as for
the observed error terms. Consequently, in such case the distributions
of the errors and/or random effects may be non-Gaussian. Welsh and
Richardson (1997) present several approaches and give an overview on how
to robustly estimate parameters in linear mixed models. In this chapter we
use the high-breakdown S-estimators of Copt and Victoria-Feser (2006) for
both the parameters of the mean as well as for the variance components.
For the purpose of developing a conditional AIC, we need in addition the
predictions of the random effects.
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Copt and Victoria-Feser (2006) work with the marginal likelihood in
the linear mixed model where all mi = m, and define the S-estimator for
the vector β and the variance components σ2 = (σ2

0, . . . , σ
2
r ) as the values

for β and σ2 that minimize det(V0) subject to the constraint

1
n

n∑

i=1

ρ[{(Yi −Xiβ)tV −1
0 (Yi −Xiβ)}1/2] = b1. (4.2)

An appropriate choice of the function ρ and of the value of b1 will lead to
robust estimators with a high breakdown point.

The loss function ρ0 is a function that is even, continuously differen-
tiable, non-decreasing on [0,∞), satisfies that ρ0(0) = 0 and is bounded
for above by 1, that is, supε∈R ρ0(u) = 1. We define b1 = EF0 [ρ0(ε)] to
ensure consistency of the scale estimator under the central model F0 and
assume that ε0 < b1 < 1− ε0, here F0 is the cumulative distribution func-
tion of ε. The notation EF0 means that the expectation is computed with
respect to F0. When ρ(x) = x2, the estimation method boils down to
maximum likelihood estimation. A translated Tukey biweight function ρ

is proposed by Rocke (1996) and is used in this chapter. A translated
Tukey biweight function can control the probability of an estimator giving
a null weight to extreme observation and it is called asymptotic rejection
probability(ARP). The translated Tukey biweight ρ function is given by,

ρ(d; c.M) =





d2

2 , 0 ≤ d ≤ M

ρM≤d≤M+c(d; c,M), M ≤ d ≤ M + c
M2

2 + c(5c+16M)
30 , d > M + c,

with M + c < ∞ and

ρM≤d≤M+c(d; c,M) =
M2

2
− M2(M4 − 5M2c2 + 15c4)

30c4

+d2

(
0.5 +

M4

2c4
− M2

c2

)
+ d3

(
4M

3c2
− 4M3

3c4

)

+d4

(
3M2

2c4
− 1

2c2

)
− 4Md5

5c4
+

d6

6c4
.
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This translated Tukey biweight ρ function leads to the weight function,

u(d; c.M) =





1, 0 ≤ d ≤ M(
1− (

d−M
c

)2
)2

, M ≤ d ≤ M + c

0, d > M + c,

where the constants c and M can be chosen to achieve the desired break-
down point and ARP.

We consider the conditional model for Y |u. In a first setting we assume
that the random effects have a normal distribution uj ∼ N(0, Gj). The
conditional S-estimator (predictor) for the vectors β, u and the variance
σ2

0 are those parameter values that minimize det(R0)=| R0 | subject to the
constraint

1
n

n∑

i=1

ρ[{(Yi −Xiβ − Ziu)tR−1
0 (Yi −Xiβ − Ziu)}1/2] = b1. (4.3)

By following the idea of Henderson (unpublished paper, 1973) we pro-
vide an iterative system that gives in addition to estimators of (β, σ2) the
predictions of the random effects. In a likelihood setting the Henderson
approach starts by phrasing the joint likelihood of (Y, u) as the product of
the likelihood of Y |u and the likelihood of u. In our context this leads to
the following joint Lagrangian function, the maximization of which leads
to estimators and predictors simultaneously,

Ljoint(β, u, σ2) = log |R0|+ τ1

n

n∑

i=1

{ρ(di)− b1}+ log |G|+ utG−1u, (4.4)

where di = di(β, u, R0) = {(Yi −Xiβ −Ziu)tR−1
0 (Yi −Xiβ −Ziu)}1/2 and

τ1 is a Lagrange multiplier. The estimators of β and σ2 that result from
this procedure are identical to those obtained by Copt and Victoria-Feser
(2006) by using a marginal Lagrangian (4.4) and by omitting the part
related to the marginal density of u. The derivation of the estimators is
given in Appendix 4.6.

Result 4.1. The S-estimators β̂ and σ̂2 of the fixed effect parameters β

and of the variance components σ2 and the S-predictions û of the random
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effects u in the linear mixed model (4.1) obtained by maximizing the joint
Lagrangian (4.4), assuming normality of the random effects, are equiva-
lently obtained by iteratively solving the following set of equations,

β̂ = (XtŴ V̂ −1X)−1XtŴ V̂ −1Y (4.5)

û =
τ̂1

2n
ĜZtŴ V̂ −1(Y −Xβ̂) (4.6)

σ̂2
0 = (d̂tŴ d̂)−1(Y −Xβ̂ − Zû)tŴ (Y −Xβ̂ − Zû) (4.7)

σ̂2
j = ût

j ûj/qj , (4.8)

where Ŵ = diagi=1,...,n(ψ(d̂i)/d̂iIm), d̂i = di(β̂, û, R̂0), d̂ = (d̂1, . . . , d̂n)t

and the vector û decomposes in components ûj with length qj , j = 1, . . . , r,
τ̂1 = 2mn(d̂tŴ d̂)−1,

V̂ = R̂ + Z(
τ̂1

2n
Ĝ)ZtŴ . (4.9)

When ρ(t) = t2 the S-scale estimator σ̂0 reduces to the sample stan-
dard deviation. In this case we have that Ŵ = 2 In and that τ̂1 = n.
Hence, as expected, V̂ = R̂ + ZĜZt and (4.5) and (4.6) correspond to
the maximum likelihood fixed and random effects formulae where β̂ML =
(XtV̂ −1X)tXtV̂ −1Y and ûML = ĜZtV̂ −1(Y −Xβ̂ML).

To accommodate possible outliers on the random effects we consider
robust S-prediction of the random effects simultaneous with S-estimation
of the fixed effects and variance components. For this purpose we define a
new joint Lagrangian function that is to be optimized over β, u and σ2,

Ljoint,2(β, u, σ2) = log |R0|+τ1

n

n∑

i=1

{ρ(di)−b1}+log |G|+τ2

r

r∑

j=1

{ρ2(d2j)−b2}.

(4.10)
Here d2,j = (ut

jG
−1
j uj)1/2, ρ and ρ2 are both Tukey’s bi-square family loss

functions, which might be taken to be different functions, b1 and b2 are
constants associated with the breakdown point of the estimator. Generally
b1 and b2 are is defined by b = E(ρ(

√
U)), where U is a Chi-squared

distribution with p degrees of freedom, p is number of parameters in the
model.. Here τ1 and τ2 are Lagrange multipliers.
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Result 4.2. The S-estimators β̃ and σ̃2 of the fixed effect parameters β

and of the variance components σ2 and the S-predictions ũ of the random
effects u in the linear mixed model (4.1) obtained by maximizing the joint
Lagrangian (4.10), without assuming normality, are equivalently obtained
by iteratively solving the following set of equations,

β̃ = (XtW̃ Ṽ −1X)−1XtW̃ Ṽ −1Y (4.11)

ũ =
rτ̃1

nτ̃2

(
G̃−1/2W̃2G̃

−1/2
)−1

ZtW̃ Ṽ −1(Y −Xβ̃) (4.12)

σ̃2
0 = (d̃tW̃ d̃)−1(Y −Xβ̃ − Zũ)tW̃ (Y −Xβ̃ − Zũ) (4.13)

σ̃2
j =

τ̃2

2rqj
ũt

jW̃2j ũj (4.14)

where W̃ = diagi=1,...,n(ψ(d̃i)/d̃iIm), d̃i = di(β̃, ũ, R̃0), d̃ = (d̃11, . . . , d̃1n)t,
τ̃1 = 2nm(d̃tW̃ d̃)−1,

Ṽ = R̃ + Z

(
rτ̃1

nτ̃2
(G̃−1/2W̃2G̃

−1/2)−1

)
ZtW̃ , (4.15)

d̃2j = G̃
−1/2
j ũj , d̃2 = (d̃21, . . . , d̃2r)t, W̃2 = diagj=1,...,r(ψ2(d̃2j)/d̃2jIqj ) and

τ̃2 = 2rq
(
d̃t

2W̃2d̃2

)−1
. Here ψ and ψ2 are the first derivatives of, respec-

tively, ρ and ρ2.

When ρ2(x) = x2, the estimators presented in Result 4.2 coincide with
those of Result 4.1.

4.3 AIC for S-estimation in linear mixed models

When both the error terms and the random effects are Gaussian,

log f(Y | β̂, û, R̂) = −1
2
N log(2π)− 1

2
log(|R̂|)

−1
2
(Y −Xβ̂ − Zû)tR̂−1(Y −Xβ̂ − Zû),(4.16)

with maximum likelihood or restricted maximum likelihood estimators β̂,
û, σ̂2

ε .
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A marginal AIC follows from an immediate application of the original
AIC (Akaike, 1973), it counts the number of estimated parameters to be
used in the penalty part of the criterion and it uses the marginal likeli-
hood of Y , with maximum likelihood estimators inserted for the unknown
parameters,

mAIC = −2 log fY (Y ; β̂, V̂ ) + 2(p + r + 1). (4.17)

Vaida and Blanchard (2005) obtain for variable selection when the ran-
dom effects are of interest a conditional AIC, defined as

cAIC = −2 log fY |u(Y | β̂, û, R̂) + 2(Tr(H) + 1), (4.18)

where fY |u is the conditional likelihood for Y |u and H = C(CtR−1C +
B)−1CtR−1, where C = (X, Z) and B = diag(0p, G

−1), where 0p is a
vector of zeros of length p. The added value of 1 in the penalty term
reflects the estimation of the error variance σ2

0.
The boundedness of the function ρ for S-estimation has as a conse-

quence that the transformation exp(−ρ) does not lead to a density func-
tion since its integral will be infinite. Hence a substitution of the model’s
density f by exp(−ρ) in expressions for the AIC is not valid when work-
ing with S-estimators, in contrast to the case of M-estimation where the
unbounded ρ functions lead to valid density functions. Motivated by the
m-variate normal likelihood with mean function µ and variance matrix Σ,
a cAIC expression for M-estimation (Ronchetti, 1997) would replace the
sum of the Mahalanobis distances by

∑n
i=1 ρ(yi; µ,Σ). For S-estimation

this, however, is the constant number nb. Indeed, the marginal multivari-
ate S-estimator of (β, u, V ) is defined by the minimization of |V0| subject
to the constraint (4.2), while the conditional multivariate S-estimator of
(β, u, R) is defined by the minimization of |R0| subject to the constraint
(4.3). S-estimation requires a different approach towards defining the AIC.
Following Tharmaratnam and Claeskens (2011a), we come to the definition
of a marginal and conditional AIC for use with S-estimation as

mAIC.S1 = 2 log | V̂ | +2 (p + q + 1), (4.19)
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cAIC.S1 = 2 log | R̂ | +2Tr(ĤS + 1), (4.20)

where, from application of Result 4.1, the matrix ĤS = (IN − R̂V̂ −1P̂ ),
with P̂ = IN −X(XtŴ V̂ −1X)−1XtŴ V̂ −1.

When robustness in both ε and u is considered we use instead the
matrices R̃, Ṽ , W̃ (see Result 4.2), with the corresponding matrices H̃S

and P̃ , leading to

mAIC.S2 = 2 log | Ṽ | +2 (p + r + 1), (4.21)

cAIC.S2 = 2 log | R̃ | +2Tr(H̃S + 1), (4.22)

Liang et al. (2008) obtain that Φ0 = Tr(∂Ŷ /(∂Y )) is a better penalty
term than Tr(H) + 1, since it takes the effect of the estimation of the
variance components into account. This is further studied and explicitly
computed by Greven and Kneib (2010, Thm. 3). A large part of the diffi-
culty in arriving at computable expressions is that the estimators (β̂, û, σ̂2)
are also dependent on Y . We can write the corrected conditional AIC from
Greven and Kneib (2010) as,

ccAIC = −2 log fY |u(Y | β̂, û, R̂) + 2Φ0. (4.23)

For the case of S-estimation we explicitly obtain the generalized degrees of
freedom for both situations with one or two levels of robustness. In these
calculations we consider σ2

ε to be unknown, and hence we do not need any
additional adjustments in the penalty Φ0 to account for the estimation of
the error variance.

Theorem 4.1. The generalized degrees of freedom ΦS = Tr(∂Ŷ /(∂Y ))
when the estimators are obtained via the joint Lagrangian (4.4) are com-
puted as:

φS1 = Tr
(
IN − R̂V̂ −1P̂ −B

)
(4.24)

where

B =
∂(R̂V̂ −1P̂ )

∂Y
Y

=

(
∂R̂V̂ −1P̂ Y

∂Y1
,
∂R̂V̂ −1P̂ Y

∂Y2
, . . . ,

∂R̂V̂ −1P̂ Y

∂YN

)
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here Bk = ∂R̂V̂ −1P̂ Y /∂Yk; k = 1, 2, . . . , N and Bk is the kth column of
the matrix B.

Bk =
∂(R̂V̂ −1P̂ )

∂σ2
0

Y
∂σ̂2

0

∂Yk
+

r∑

j=1

∂(R̂V̂ −1P̂ )
∂σ2

j

Y
∂σ̂2

j

∂Yk

= D1D2k +
r∑

j=1

D3jD4jk.

Here,

D1 =
[
IN − R̂V̂ −1

(
(IN − P̂ )Dvσ0 −Dwσ0

)]
V̂ −1P̂ ,

D2k = −H−1
σ0

Hσ0Yk
,

D3j = −τ1/(2n)R̂V̂ −1P̂ZZtŴ V̂ −1P̂ ,

D4jk = −H−1
σj

HσjYk
,

with V̂ , Ŵ and τ̂1 as in Result 4.1, Âj = τ̂1/(2n)Zt
jŴ V̂ −1P̂ Y , Dvσ0 =

∂V̂ /∂σ2
0, Dwσ0 = ∂Ŵ/∂σ2

0, Dτ1σ0 = ∂τ̂1/∂σ2
0, DvYk

= ∂V̂ /∂Yk, DwYk
=

∂Ŵ/∂Yk, Dτ1Yk
= ∂τ̂1/∂Yk. D(V −1Pk)Yk

= ∂(V̂ −1P̂k)/∂Yk, Pk is a kth
column of matrix P .
Further,
Hσ0 = −N/σ4

0 −N−1Y tP̂ tV̂ −1
[
Ŵ V̂ −1P̂ Y Dτ1σ0 − 2 τ1ŴY V̂ −1

{(IN − P̂ )Dvσ0 −Dwσ0}V̂ −1P̂ + τ1Dwσ0 V̂
−1P̂ Y

]
,

Hσ0Yk
= −n−1Y t

k P̂ t
kV̂

−1
[
2 τ1Ŵ V̂ −1P̂k + Dτ1Yk

Ŵ V̂ −1P̂kYk + 2 τ1Ŵ

D(V −1Pk)Yk
Yk + τ1DwYk

V̂ −1P̂kYk

]
,

Hσj = −qj/σ4
j − 2 Ât

j{τ1/(2n)Zt
jŴ V̂ −1P̂Zj}Âj,

HσjYk
= −n−1Âj

t
[
τ1Z

t
jŴ V̂ −1P̂k + τ1Z

t
jDwYk

V̂ −1P̂kYk + τ1Z
t
jŴ

D(V −1Pk)Yk
Yk + Dτ1Yk

Zt
jŴ V̂ −1P̂kYk

]
.
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Theorem 4.2. The generalized degrees of freedom ΦS2 when the estimators
are obtained via the joint Lagrangian (4.10) are computed as:

φS2 = Tr
(
IN − R̃Ṽ −1P̃ − B̃

)
(4.25)

where

B̃ =
∂(R̃Ṽ −1P̃ )

∂Y
Y =

(
∂R̃Ṽ −1P̃ Y

∂Y1
,
∂R̃Ṽ −1P̃ Y

∂Y2
, . . . ,

∂R̃Ṽ −1P̃ Y

∂YN

)

here

B̃k =
∂(R̃Ṽ −1P̃ )

∂σ2
0

Y
∂σ̃2

0

∂Yk
+

r∑

j=1

∂(R̃Ṽ −1P̃ )
∂σ2

j

Y
∂σ̃2

j

∂Yk

= D̃1D̃2k +
r∑

j=1

D̃3jD̃4jk.

The quantities D̃1 and D̃2k are the same as in Theorem 4.1 though use the
estimators Ṽ , W̃2, d̃2 and τ̃2 as from Result 4.2, D̃3j = −R̃Ṽ −1P̃ D̃vσj Ṽ

−1P̃

and D̃4jk = −H̃−1
σj

H̃σjYk
.

Here D̃vσj = ∂Ṽ /∂σ2
j , D̃τ2σj = ∂τ̃2/∂σ2

j , D̃d2jσj = ∂d̃2j/∂σ2
j , D̃W2σj =

∂W̃2/∂σ2
j , D̃τ2Yk

= ∂τ̃2/∂Yk, D̃d2jYk
= ∂d̃2j/∂Yk, D̃W2jYk

= ∂W̃2j/∂Yk.
Further,
H̃σj = −qj/σ̃4

j + 1/(2rσ̃2
j )d̃

t
2j

[(
τ̃2/σ̃2

j

)
W̃2j d̃2j − W̃2j d̃2jD̃τ2σj−

2τ̃2W̃2jD̃d2jσj − τ̃2D̃W2jσj d̃2j

]
,

H̃σjYk
= −1/(2rσ̃2

j )d̃
t
2j

[
W̃2j d̃2jD̃τ2Yk

+ 2τ̃2W̃2jD̃d2jYk
+ τ̃2D̃W2jYk

d̃2j

]
.

The generalized degrees of freedom from Theorems 4.1 and 4.2 lead to
corrected versions of the conditional AIC,

ccAIC.S1 = 2 log | R̂ | +2ΦS1, (4.26)

ccAIC.S2 = 2 log | R̃ | +2ΦS2. (4.27)
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4.4 Numerical results

4.4.1 Algorithm

An iterative procedure is required to compute the S-estimators in Re-
sults 4.1 and 4.2, as is the case for other S-estimation schemes, e.g. in
linear regression models. The algorithm to obtain the estimators from
Result 4.1 is described in the following steps,

Step 1: Let β̂(0), û(0), (σ̂2
0)

(0) and (σ̂2
j )

(0) be the initial values, for which
we use maximum likelihood estimators.

Step 2: Set k = 0. Iterate the following steps until convergence:

(i) Compute the d̂
(1)
i , weights Ŵ (1) and τ̂ (1) as in Result 4.1.

(ii) Compute β̂(1) and û(1) by substituting (σ̂2
0)

(0), (σ̂2
j )

(0), d̂
(1)
i ,

Ŵ (1) and τ̂ (1) in the equations (4.5) and (4.6).

(iii) Compute (σ̂2
0)

(1), (σ̂2
j )

(1) by substituting β̂(1), û(1), d̂
(1)
i , Ŵ (1)

and τ̂ (1) in the equations (4.7) and (4.8).

(iv) If either k = maxit (the maximum number of iterations)
or ‖β̂(k) − β̂(k+1)‖ < ε ‖β̂(k)‖ where ε > 0 is a fixed small
constant (the tolerance level) , then set β̂F = β̂(k) and stop.

Step 3: Compute the final estimators (σ̂2
0)

(F ), (σ̂2
j )

(F ) by substituting β̂(F ),

û(F ), d̂
(F )
i , Ŵ (F ) and τ̂ (F ) in the equations (4.7) and (4.8).

We used a similar algorithm for obtaining the estimates from Result 4.2.
We have coded the above algorithm in R. In our experience the above
algorithm converges without problems in the majority of the cases. The
algorithm with ε = 10−6 and maxit = 500 converges generally in less
than 50 iterations. For all of our simulation experiments, we have never
encountered a situation where the algorithm diverged.

4.4.2 Simulation results – S-estimators

Case 1. We consider a model Y = m1(x) + ε, with x = (x1, . . . , x6), the
true mean function m1(x) = 1 + d sin(πx1) + x1 + x2 + x3, where d = 15.
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The covariates are generated from a multivariate normal distribution with
mean vector µ = (1, 2, · · · , 6) and the covariance matrix Σ,

Σ =

(
I3(0.6) 0 · 13×3

0 · 13×3 I3(0.3)

)
,

while the errors ε come from a N(0, 1) distribution. The sample size
n = 100. To investigate the robustness of the estimation method against
outliers, we generated, using different percentages of outliers (0%, 10%,
20%, 30% and 40%), for each of the simulated cases outlying error terms
from a normal distribution with mean 100 and standard deviation 0.5. We
fit a cubic thin plate regression splines model

Yi = β0 +
6∑

j=1

βjxji +
K∑

k=1

uk | x1i − κk |3 +εi,

using ML estimation and the S1 and S2-estimation methods, see Results 4.1
and 4.2.

We use a mixed model formulation. where the uk are random vari-
ables with mean zero and variance σ2

u. We placed the knots according to
the quantiles of the data. For sample size n = 100 there were 24 knots.
For the non-robust estimation methods we have used the R library Semi-
Par, function spm, for the robust estimation methods, we used our own
implementation of the algorithm in Section 4.4.1.

We compute the median squared prediction error (MSPE) to check the
fit of the estimated models. Denoting m̂r(x) the estimated value of m(x)
for simulation run r, (r = 1, 2, . . . , 1000), the MSPE for the rth simulation
run is defined by,

MSPEr = median{[m(xi)− m̂r(xi)]2, i = 1, . . . , n}.

To visualize the variability of the obtained estimates, we construct
boxplots on the log scale of the MSPE values, see Figure 4.1.
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Figure 4.1: Box plots of log scale of the median squared prediction er-
ror using (a) ML-estimation, (b) S1-estimation and (c) S2- estimation for
samples with mean structure m1(x), error distribution N(0, 12) and differ-
ent percentages of outliers N(100, 0.52), for sample size n = 100.
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It is observed that the MSPEs of the S1-estimators and S2-estimators
remain stable as the proportion of contamination increases, though they
become more variable for 40% of outliers. The ML-estimator’s MSPEs
increase in the presence of outliers, even with only 10% of outliers. Both
S-estimation methods perform about equally well.

4.4.3 Simulation results – Variable selection

We use different versions of the AIC for linear mixed models with the fol-
lowing notation:
mAIC – Marginal AIC based on the ML-estimator ((4.17), Vaida and Blan-
chard (2005))
cAIC – Conditional AIC based on the ML-estimator ((4.18),(Vaida and
Blanchard, 2005))
ccAIC – Corrected conditional AIC based on the ML-estimator using Φ0

(Greven and Kneib, 2010)
mAIC.S1 – Marginal AIC based on the S1-estimator (Section 4.3, (4.19))
cAIC.S1 – Conditional AIC based on the S1-estimator (Section 4.3, (4.20))
ccAIC.S1 – Corrected conditional AIC based on the S1-estimator (Section
4.3, (4.26)).

Data are generated according to three settings. For case 1, see Sec-
tion 4.4.2. Case 2 is taken from Greven and Kneib (2010), where m2(x) =
1 + x + 2d(0.3− x)2. The covariate values x are generated from a uniform
distribution on the interval [0, 1]. In the model, d is a constant and in-
creasing values of d correspond to the increased non-linearity. We generate
11 different models corresponding to d = (0, 5, 10, . . . , 50). The model is
linear in x when d = 0. In the case of no outliers, the error terms ε have
a standard normal distribution.
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Case 3: m3(x) = 1 + 2d1 cos(πx1) + d2 sin((0.5− x2)2) + x3, with d1 =
15, d2 = 25. The covariates x1, . . . , x6 are generated from a multivariate
normal distribution which is the same as in case 1. The full model that is
fit to the data is

Yi = β0 +
6∑

j=1

βjxji +
K∑

k=1

u1k | x1i − κk |3 +
K∑

k=1

u2k | x2i − κk |3 +εi,

that is, cubic thin plate splines are used to model smooth functions of
x1, x2, while x3, . . . , x6 enter the model in a linear way.

We fit model with all possible combinations of the six covariates, re-
sulting in (26 − 1) different models.

We first discuss the results from case 2. For each value of the constant
d, for each simulated data set, we use the AIC, ccAIC, mAIC.S1 and
ccAIC.S1 to decide on either the linear model (with d = 0) or the more
complex model (with the given value of d). To assess the performance
of the marginal and the conditional AIC for distinguishing between linear
and non-linear models, we compute the frequency of selecting the nonlinear
model for each d value.

We use 1000 simulated data sets for both cases with (a) no outliers
and (b) 20% outliers on the error terms, generated from a N(100, 0.52)
distribution for the sample size n = 100.

From Figure 4.2 we observe that the corrected conditional AIC selects
a larger proportion of nonlinear models than the marginal AIC (which is
the true model when d 6= 0).

This holds for both maximum likelihood estimators and S1-estimators.
In these penalized spline models, the random effects correspond to the
spline coefficients. The conditional AIC is better suited to decide on the
inclusion of random effects (i.e. nonlinear effects in this setup) than the
marginal AIC. The results do not change much for different values of d.
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Figure 4.2: Proportion of selected larger models from marginal AIC (solid
line), ccAIC (dashed line), mAIC.S1 (dotted line) and ccAIC.S1 (dot-
dashed line) with mean function m2(x). (a) no outliers in the data, (b)
20% of outliers in the error variables ε.
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For cases 1 and 3 there are six covariates used for fitting the models,
some of them are redundant. A summary of the simulation results for these
cases is provided by reporting the proportions of selected models that are
(C) Correct fit – The true model only.
(O) Over fit – Models containing all the variables in the true model plus
some more that are actually redundant.
(U) Under fit – Models with only a strict subset of the variables in the
true model.
(W) Wrong fit – All models that are not overfit (O), not a correct fit
(C) nor underfit (U). These are the models where some of the relevant
variables might be present (though not all of them) in addition to some of
the redundant variables.

For case 1 we add outliers on the response variable that are generated
from a N(100, 0.52) distribution, using three situations of 10%, 20% and
30% of outliers. We fit a collection of models to these data, where, for
case 1, the covariate x1 is always included in the model, while we choose
amongst the other covariates x2, . . . , x5. This results in 25−1 models. The
simulation results are shown in Table 4.1 and as expected, the AIC based
on maximum likelihood estimators works better than the AIC based on
S-estimators for the data without outliers. However, the ML-based AIC
selects a large proportion of underfit or wrong fit models for the data with
outliers. A higher proportion of overfit and correct fit models are selected
by the AIC based on S1-estimators. Because the situation of this example
requires selection amongst the parametric components of the models, and
the nonparametric (random) part of the models is included in all of the
models, we observe a comparable behavior of the marginal and conditional
AIC for S1-estimators. The AICs based on S-estimators are preferred to
the ML-versions for the cases with a high contamination level of outliers,
the methods break down with 50% of outliers in the data.
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Table 4.1: Proportion of selected models from mAIC, cAIC, ccAIC,
mAIC.S1, cAIC.S1 and ccAIC.S1 for data generated with dependent xs,
mean structure m1 for p = 6, error terms from a N(0, 1) distribution, and
for sample size n = 100. We consider different % ε of outliers generated
from N(100, 0.52). S1- estimators are computed with 50% breakdown point.

% mAIC cAIC ccAIC mAIC.S1 cAIC.S1 ccAIC.S1

0 C 0.535 0.509 0.509 0.450 0.476 0.487
O 0.465 0.491 0.491 0.300 0.398 0.396
U 0.000 0.000 0.000 0.083 0.076 0.074
W 0.000 0.000 0.000 0.167 0.050 0.043

10 C 0.019 0.020 0.021 0.374 0.372 0.380
O 0.013 0.011 0.010 0.451 0.460 0.472
U 0.544 0.604 0.612 0.065 0.023 0.030
W 0.424 0.365 0.357 0.110 0.145 0.118

20 C 0.020 0.017 0.019 0.327 0.364 0.371
O 0.018 0.014 0.023 0.429 0.432 0.443
U 0.582 0.632 0.602 0.073 0.077 0.083
W 0.380 0.337 0.356 0.171 0.127 0.103

30 C 0.014 0.013 0.015 0.283 0.274 0.291
O 0.018 0.014 0.017 0.491 0.492 0.480
U 0.564 0.663 0.670 0.084 0.092 0.097
W 0.404 0.310 0.298 0.142 0.142 0.132

For case 3 we conduct selection amongst the parametric and nonpara-
metric (random) components of the model. This results in fitting 26 − 1
different models to the data. Again, outliers on the response variable are
generated from a N(100, 0.52) distribution in different percentages (10%,
20% and 30%). Based on the results from Table 4.2 we clearly observe that
the performance of the two marginal AICs (mAIC and mAIC.S1) is infe-
rior to that of the conditional AICs, which is to be expected since in this
setting we select both the parametric and the nonparametric components
in the model.
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Table 4.2: Proportion of selected models from mAIC, cAIC, ccAIC,
mAIC.S1, cAIC.S1 and ccAIC.S1 for data generated with dependent xs,
mean structure m3 for p = 6, error terms from a N(0, 1) distribution, and
for sample size n = 100. We consider different % of outliers on ε, gener-
ated from N(100, 0.52). S1- estimators are computed with 50% breakdown
point.

% mAIC cAIC ccAIC mAIC.S1 cAIC.S1 ccAIC.S1

0 C 0.383 0.494 0.442 0.270 0.432 0.499
O 0.307 0.471 0.483 0.210 0.361 0.371
U 0.231 0.000 0.000 0.364 0.059 0.062
W 0.079 0.035 0.075 0.156 0.148 0.068

10 C 0.009 0.010 0.011 0.257 0.422 0.474
O 0.003 0.006 0.008 0.200 0.343 0.352
U 0.654 0.638 0.685 0.346 0.056 0.059
W 0.334 0.346 0.296 0.198 0.179 0.115

20 C 0.006 0.008 0.010 0.236 0.409 0.432
O 0.002 0.004 0.016 0.216 0.337 0.428
U 0.672 0.683 0.698 0.318 0.052 0.107
W 0.320 0.305 0.276 0.230 0.202 0.033

30 C 0.002 0.006 0.005 0.283 0.399 0.422
O 0.001 0.004 0.007 0.491 0.376 0.395
U 0.710 0.693 0.706 0.084 0.079 0.106
W 0.287 0.297 0.282 0.142 0.146 0.077

Table 4.2 shows that the conditional S1-methods have a good perfor-
mance also in the case that no outliers are present in the data, and these
methods are preferred in the case of outliers. Higher proportions of cor-
rect and overfit models are obtained when the corrected versions of the
conditional AIC are used.
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4.5 Discussion

The need for robust model selection methods in linear mixed models has
lead us to develop the generalized degrees of freedom for S-estimation
methods. In multilevel models, extreme or outlying observations might
occur at any level. The proposed estimation method and the subsequent
generalized degrees of freedom that we have used in a conditional AIC,
could presumably be developed along similar lines for other models, such
as generalized linear mixed models.

4.6 Appendix. Computation of S-estimators for

linear mixed models

4.6.1 Proof of Result 4.1

Setting the partial derivatives of Ljoint in (4.4) with respect to β, u and the
vector σ2 to zero, and solving for these values, yields estimators β̂, û, σ̂2.
We arrive at

β̂ = (XtŴ R̂−1X)−1XtŴ R̂−1(y − Zû) (4.28)

û = (ZtŴ R̂−1Z +
2n

τ̂1
Ĝ−1)−1ZtŴ R̂−1(Y −Xβ̂). (4.29)

Substituting (4.29) in equation (4.28) yields (4.5), while substituting (4.5)
in (4.29) yields (4.6).
We let V̂ −1 = (R̂−1− R̂−1Z(ZtŴ R̂−1Z + 2n

τ̂ Ĝ−1)−1ZtŴ R̂−1) from which
it follows that V̂ = R̂ + Z( τ̂

2nĜ)ZtŴ .
Equating the partial derivative of Ljoint with respect to σ2

0 to zero yields
first, by solving for τ1, that

m =
τ̂1

2n

n∑

i=1

W (d̂i)(yi −Xiβ̂ − Ziû)tR̂−1
i (yi −Xiβ̂ − Ziû),

from which follows that τ̂1 = 2mn(d̂tŴ d̂)−1. Second, solving for σ2
0 yields

that
σ̂2

0 =
τ̂1

2mn
(Y −Xβ̂ − Zû)tŴ (Y −Xβ̂ − Zû),
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from which (4.7) follows. The partial derivatives of Ljoint with respect to
σ2

j (j = 1, . . . , q), which occur only in the matrix G give that σ̂2
j = ût

j ûj/qj .

4.6.2 Proof of Result 4.2

The estimators for β, σ2
0 and τ1 are obtained similarly as in Result 4.1

though now starting from the joint Lagrangian (4.10). The expressions for
the predictors ũ and for the variance component estimators are different.
After substituting the estimator β̃ in the next equation,

ũ =
(

ZtW̃ R̃−1Z +
nτ̃2

qτ̃1
G̃−1/2W̃2G̃

−1/2

)−1

ZtW̃ R̃−1(Y −Xβ̃),

the estimator ũ of (4.12) results. From

∂Ljoint2(β̃, ũ, σ2)
∂σ2

j

|σ2
j =σ̃2

j
=

∂

∂σ2
j

{log | G | + τ̃2

r

r∑

k=1

ρ2(d̃2k)} = 0, (4.30)

for all j = 1, . . . , r, (4.14) follows. Since (4.30) implies that also the
sum over j = 1, . . . , r of these partial derivatives is equal to zero, τ̃2 =
2rq(

∑r
j=1 ũt

jW̃2jG̃
−1
j ũj)−1 = 2rq(d̃t

2W̃2d̃2)−1.

4.7 Appendix. Generalized degrees of freedom

for the S-estimators

4.7.1 Proof of Theorem 4.1

We start from model (4.1) and assume that all variance components are un-
known. The generalized degrees of freedom is defined by ΦS1 = Tr

(
∂Ŷ /(∂Y )

)
.

From (4.5) and (4.6) it follows that

Ŷ = Xβ̂ + Zû = Xβ̂ + Z

(
τ̂1

2n
ĜZtŴ V̂ −1(Y −Xβ̂)

)
.

The expression of V from Result 4.1, see (4.9), leads to rewriting
Z( τ̂1

2nĜ)ZtŴ = V̂ − R̂, from which it follows that
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Ŷ = Xβ̂ + (IN − R̂V̂ −1)(Y −Xβ̂) = Y − R̂V̂ −1P̂ Y

where P̂ = IN −X(XtŴ V̂ −1X)−1XtŴ V̂ −1. Thus

φS1 = Tr

(
IN − R̂V̂ −1P̂ − ∂(R̂V̂ −1P̂ )

∂Y
Y

)
. (4.31)

With R̂ = σ̂2
0IN and Ĝj = σ̂2

j Iqj , j = 1, . . . , r, Y is a vector of length N ,
Yk is the kth element of the vector Y . We define the N ×N matrix B,

B =

(
∂R̂V̂ −1P̂ Y

∂Y1
,
∂R̂V̂ −1P̂ Y

∂Y2
, . . . ,

∂R̂V̂ −1P̂ Y

∂YN

)
(4.32)

here Bk = ∂R̂V̂ −1P̂ Y /∂Yk; k = 1, 2, . . . , N and Bk is the kth column of
the matrix B. Bk is a N ×1 column matrix. We can re-write Bk using the
chain rule as follows,

Bk =
∂(R̂V̂ −1P̂ )

∂σ2
0

Y
∂σ̂2

0

∂Yk
+

r∑

j=1

∂(R̂V̂ −1P̂ )
∂σ2

j

Y
∂σ̂2

j

∂Yk
. (4.33)

A further application of the chain rule leads to

∂(R̂V̂ −1P̂ )
∂σ2

0

= V̂ −1P̂ − R̂V̂ −1
{ ∂V̂

∂σ2
0

−X(XtŴ V̂ −1X)−1Xt

(
Ŵ V̂ −1 ∂V̂

∂σ2
0

− ∂Ŵ

∂σ2
0

)}
V̂ −1P̂ . (4.34)

Starting from (4.9),

∂V̂

∂σ2
0

= IN + Z(
1
2n

Ĝ)ZtŴ
∂τ̂1

∂σ2
0

+ Z(
τ̂1

2n
Ĝ)Zt ∂Ŵ

∂σ2
0

, (4.35)

where

∂τ̂1

∂σ2
0

= −2mn(d̂tŴ d̂)−1
(
2d̂tŴ

∂d̂

∂σ2
0

+ d̂t ∂Ŵ

∂σ2
0

d̂
)
(d̂tŴ d̂)−1

∂Ŵ

∂σ2
0

= diagi=1,...,n

[(
d̂iψ

′(d̂i)− ψ(d̂i)

d̂2
i

)
∂d̂i

∂σ2
0

Im

]

∂d̂i

∂σ2
0

=
1

2d̂i

(Yi −Xiβ̂ − Ziû)tR̂−1
i R̂−1

i (Yi −Xiβ̂ − Ziû).
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Since from (4.9) it follows that ∂V̂
∂σ2

j
= τ̂1

2nZjZ
t
jŴ and since

∂P̂
∂σ2

j
= τ̂1

2n(IN − P̂ )ZjZ
t
jŴ V̂ −1P̂ ,

∂(R̂V̂ −1P̂ )
∂σ2

j

= − τ̂1

2n
R̂V̂ −1P̂ZjZ

t
jŴ V̂ −1P̂ . (4.36)

Define for j = 0, . . . , r

∂Ljoint(β̂, û, σ2)
∂σ2

j

|σ2
j =σ̂2

j
= h(σ̂2

j (Y ), Y ) = 0. (4.37)

Using the estimators from Result 4.1,

h(σ̂2
0(Y ), Y ) =

m

σ̂2
0

− τ̂1

n
(Y −Xβ̂ − Zû)tR̂−1Ŵ R̂−1(Y −Xβ̂ − Zû)

=
m

σ̂2
0

− τ̂1

n
Y tP̂ tV̂ −1Ŵ V̂ −1P̂ Y. (4.38)

In this expression τ̂1, P̂ and Ŵ are a function of Y and σ̂2
0. Take the full

differentiation of h(σ̂2
0(Y ), Y ) with respect to Yk,

dh(σ̂2
0(Y ), Y )
dYk

=
∂h(σ̂2

0(Y ), Y )
∂σ2

0

dσ̂2
0

dYk
+

∂h(σ̂2
0(Y ), Y )
∂Yk

= 0,

to find that

dσ̂2
0

dYk
= −

[
∂h(σ̂2

0(Y ), Y )
∂σ2

0

]−1
∂h(σ̂2

0(Y ), Y )
∂Yk

. (4.39)

From Result 4.1,

∂h(σ̂2
0(Y ), Y )
∂Yk

= − 1
n

Y t
k P̂ t

kV̂
−1

[
2τ̂1Ŵ V̂ −1P̂k +

∂τ̂1

∂Yk
Ŵ V̂ −1P̂kYk

+2τ̂1Ŵ
∂(V̂ −1P̂k)

∂Yk
Yk + τ̂1

∂Ŵ

∂Yk
V̂ −1P̂kYk

]
,

with

∂τ̂1

∂Yk
= −2mn(d̂tŴ d̂)−1

[
2d̂tŴ

∂d̂

∂Yk
+ d̂t ∂Ŵ

∂Yk
d̂

]
(d̂tŴ d̂)−1

∂d̂i

∂Yk
=

(Yi −Xiβ̂ − Ziû)tR̂−1
i

d̂i

∂Ŵ

∂Yk
= diagi=1,...,n

[(
d̂iψ

′(d̂i)− ψ(d̂i)

d̂2
i

)
∂d̂i

∂Yk
Im

]
.
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Here Pk is the kth column of the matrix P . Further it follows from (4.9)
and from matrix differentiation rules that

∂(V̂ −1P̂k)
∂Yk

= −V̂ −1 ∂V̂

∂Yk
V̂ −1P̂k + V̂ −1 ∂P̂k

∂Yk
,

where

∂V̂

∂Yk
=

1
2n

Z
∂τ̂1

∂Yk
ĜZtŴ + Z

τ̂1

2n
ĜZt ∂Ŵ

∂Yk

∂P̂k

∂Yk
= X(XtŴ V̂ −1X)−1Xt

(
Ŵ V̂ −1 ∂V̂

∂Yk
− ∂Ŵ

∂Yk

)
V̂ −1P̂k.

With the calculations done so far, we immediately obtain that

∂h(σ̂2
0(Y ), Y )
∂σ2

0

= − n

σ̂4
0

− 1
n

Y tP̂ tV̂ −1

[
Ŵ V̂ −1P̂ Y

∂τ̂1

∂σ2
0

+2τ̂1Ŵ
∂(V̂ −1P̂ )

∂σ2
0

Y + τ̂1
∂Ŵ

∂σ2
0

V̂ −1P̂ Y

]
.

where

∂(V̂ −1P̂ )
∂σ2

0

= −V̂ −1
{ ∂V̂

∂σ2
0

−X(XtŴ V̂ −1X)−1Xt
(
Ŵ V̂ −1 ∂V̂

∂σ2
0

− ∂Ŵ

∂σ2
0

)}

V̂ −1P̂ .

We consider next the functions h(σ̂2
j (Y ), Y ) for j = 1, . . . , r. Using the

expressions from Result 4.1,

h(σ̂2
j (Y ), Y ) =

qj

σ̂2
j

− ût
jĜ

−1
j Ĝ−1

j ûj

=
qj

σ̂2
j

− τ̂1

2n
Y tP̂ tV̂ −1ŴZj

τ̂1

2n
Zt

jŴ V̂ −1P̂ Y

=
qj

σ̂2
j

− Ât
jÂj ,
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where Âj = τ̂1
2nZt

jŴ V̂ −1P̂ Y . By the full differentiation of h, this further
leads to

dσ̂2
j

dYk
= −

[
∂h(σ̂2

j (Y ), Y )
∂σ2

j

]−1
∂h(σ̂2

j (Y ), Y )
∂Yk

, (4.40)

where via similar calculations we arrive at

∂h(σ̂2
j (Y ), Y )
∂Yk

= −2Ât
j

∂Âj

∂Yk

∂h(σ̂2
j (Y ), Y )
∂σ2

j

= − qj

σ̂4
j

− 2Ât
j

∂Âj

∂σ2
j

= − qj

σ̂4
j

− 2Ât
j

(
τ̂1

2n
Zt

jŴ V̂ −1P̂Zj

)
Âj ,

where it holds that

∂Âj

∂Yk
=

τ̂1

2n
Zt

j

{
Ŵ V̂ −1P̂k +

∂Ŵ

∂Yk
V̂ −1P̂kYk + Ŵ

∂(V̂ −1P̂k)
∂Yk

Yk

}

+
1
2n

∂τ̂1

∂Yk
Zt

jŴ V̂ −1P̂kYk

∂Âj

∂σ2
j

=
τ̂1

2n
Zt

jŴ
∂(V̂ −1P̂ )

∂σ2
j

Y =
τ̂1

2n
Zt

jŴ
τ̂1

2n
V̂ −1P̂ZjZ

t
jŴ V̂ −1P̂ Y.

This proves Theorem 4.1.
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4.7.2 Proof of Theorem 4.2

The proof goes along the same lines as that of Theorem 4.1, with this
difference that we use the estimators from Result 4.2, and in particular
the expressions for (4.31) and (4.33) with these estimators, in addition to
(4.37) using now Ljoint2, leads to considering

∂h(σ̃2
0(Y ), Y )
∂Yk

= − 1
n

Y t
k P̃ t

kṼ
−1

[
W̃ Ṽ −1P̃k

(
2τ̃1 +

∂τ̃1

∂Yk
Yk

)

+2τ̃1W̃
∂(Ṽ −1P̃k)

∂Yk
Yk + τ̃1

∂W̃

∂Yk
Ṽ −1P̃kYk

]

∂h(σ̃2
0(Y ), Y )
∂σ2

0

= − n

σ̃4
0

− 1
n

Y tP̃ tṼ −1

[
W̃ Ṽ −1P̃ Y

∂τ̃1

∂σ2
0

+2τ̃1W̃Y
∂(Ṽ −1P̃ )

∂σ2
0

+ τ̃1
∂W̃

∂σ2
0

Ṽ −1P̃ Y

]
,

from which we in a similar way arrive at the estimator

dσ̃2
0

dYk
= −

[
∂h(σ̃2

0(Y ), Y )
∂σ2

0

]−1
∂h(σ̃2

0(Y ), Y )
∂Yk

. (4.41)

The quantities R̃, τ̃1 and W̃ do not depend on σ̃2
j ; j = 1, . . . , r. From

(4.15),

∂Ṽ

∂σ2
j

= Z
rτ̃1

nτ̃2
(G̃−1/2

j W̃2jG̃
−1/2
j )−1

[
G̃
−1/2
j

(
W̃2jG̃

−1
j +

∂W̃2j

∂σ2
j

)
G̃
−1/2
j

×(G̃−1/2
j W̃2jG̃

−1/2
j )−1 − 1

τ̃2

∂τ̃2

∂σ2
j

]
ZtW̃

With ∂d̃2j/∂σ2
j = −1

2G̃−1
j d̃2j , and δjk the Kronecker delta such that δjk = 1

if and only if j = k, and δjk = 0 otherwise,

∂W̃2j

∂σ2
j

= diagk=1,...,r

[(
δjk

d̃2kψ
′(d̃2k)− ψ(d̃2k)

d̃2
2k

)
∂d̃2k

∂σ2
j

Iqk

]

∂τ̃2

∂σ2
j

= −2qr(d̃t
2W̃2d̃2)−1

[
2d̃t

2W̃2
∂d̃2

∂σ2
j

+ d̃t
2

∂W̃2

∂σ2
j

d̃2

]
(d̃t

2W̃2d̃2)−1



116
Chapter 4 - Robust estimation and a conditional Akaike

information criterion for linear mixed models

All this taken together gives us ∂(R̃Ṽ −1P̃ )/(∂σ2
j ). Defining

∂Ljoint2(β̃, ũ, σ2)
∂σ2

j

|σ2
j =σ̃2

j
= 0

= h2(σ̃2
j (Y ), Y ) = qj/σ2

j −
τ̃2

rσ̃2
j

d̃t
2jW̃2j d̃2j ,

it follows that

∂h2(σ̃2
j (Y ), Y )
∂Yk

= − 1
2rσ̃2

j

d̃t
2j

[
W̃2j d̃2j

∂τ̃2

∂Yk
+ 2τ̃2W̃2j

∂d̃2j

∂Yk

+τ̃2
∂W̃2j

∂Yk
d̃2j

]
(4.42)

∂h2(σ̃2
j (Y ), Y )
∂σ2

j

= − qj

σ̃4
j

+
1

2rσ̃2
j

d̃t
2j

[
τ̃2

σ̃2
j

W̃2j d̃2j − W̃2j d̃2j
∂τ̃2

∂σ2
j

−2τ̃2W̃2j
∂d̃2j

∂σ2
j

− τ̃2
∂W̃2j

∂σ2
j

d̃2j

]
, (4.43)

where

∂τ̃2

∂Yk
= −2qr(d̃t

2jW̃2j d̃2j)−1

[
2d̃t

2jW̃2j
∂d̃2j

∂Yk
+ d̃t

2j

∂W̃2j

∂Yk
d̃2j

]

×(d̃t
2jW̃2j d̃2j)−1

∂d̃2j

∂Yk
=

rτ̃1

nτ̃2
G̃
−1/2
j

(
G̃
−1/2
j W̃2jG̃

−1/2
j

)−1
Zt

jW̃ Ṽ −1P̃kYk

∂W̃2j

∂Yk
= diagj=1,...,r

[(
d̃2jψ

′
2(d̃2j)− ψ2(d̃2j)

d̃2
2j

)
∂d̃2j

∂Yk

]

This leads to

dσ̃2
j

dYk
= −

[
∂h2(σ̃2

j (Y ), Y )
∂σ2

j

]−1
∂h2(σ̃2

j (Y ), Y )
∂Yk

, (4.44)

from which the stated results follows.



Chapter 5

Implementations in the software

package R

This chapter discusses the functions implemented in the R software to fit
and study the proposed methods in the dissertation. Once we propose a
new statistical method, we want it to be publicly available since then the
proposed methods can more easily be used in practice by practitioners in
their corresponding fields of application.

We present the implemented functions for each of our developed meth-
ods as given in the previous chapters. In the first part of this chapter, we
discuss the functions used in S-estimation for penalized regression splines.
This is followed by robust versions of AIC functions for regression models
and finally we give the functions used for the S-estimation method and for
model selection based on S-estimators for linear mixed models.

5.1 R functions for: “S-Estimation for penalized

regression splines”

We used as a loss function the Tukey bi-square function to compute the
S-estimator in this dissertation and we define the ρ function, the first
derivative of the ρ function (ψ function) and the first derivative of the ψ

117
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function here.

# Define rho function

Rho=function(x, cc){

U=x/cc

U1=3 * U^2 - 3 * U^4 + U^6

U1[abs(U) > 1] = 1

return(U1)}

# Define psi function

Psi=function(x, cc){

U = x/cc

U1 = 6/cc * U * (1 - U^2)^2

U1[abs(U) > 1] = 0

return(U1)}

To decide on the convergence of the proposed estimates of Chapters 2 and
4, we used the norm function, which is given here,

# Define norm function

norm = function(a) sqrt(sum(a^2))

To compute the non-robust penalized least squares estimators we have used
the following function in Chapter 2.

pen.ls = function(y, X, D, lambda){

beta.ls = as.vector(solve(t(X)%*%X+lambda*D)%*%t(X)%*%y)

Sbeta.ls = mad( y - X %*% beta.ls)

return(list(beta=beta.ls,Sbeta=Sbeta.ls))}

# Define generalized cross validation function for

# LS-penalized regression

gcv = function(y, X, D, lambda){

# y is the response vector

# X is the big design matrix

# D is the penalty matrix

# lambda is the value of the penalty constant to be evaluated
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tmp = solve( t(X) %*% X + lambda * D ) %*% t(X)

beta = as.vector( tmp %*% y )

n = length(y)

r = as.vector(y - X %*% beta)

H = X %*% tmp

return( n * sum( r^2 ) / (n - sum(diag(H)))^2 )}

# GCV search for penalized LS-estimators

pen.ls.gcv = function(y, X, D, lambdas){

ll = length(lambdas)

# GCVs for the LS estimator

gcvs = rep(0, ll)

for(i in 1:ll){

gcvs[i] = gcv(y, X, D, lambdas[i])}

# find the best lambda

lam = max( lambdas[ gcvs == min(gcvs) ] )

beta.ls = as.vector(solve(t(X)%*%X+lam*D)%*%t(X)%*%y)

Sbeta.ls = mad( y - X %*% beta.ls)

# get the LS estimated mean

yhat.ls = as.vector(X%*%solve(t(X)%*%X+lam*D)%*%t(X)%*%y)

return(list(beta=beta.ls, Sbeta=Sbeta.ls, yhat = yhat.ls,

lam=lam, gcv=min(gcvs)))}

Define the function for penalized M-estimators for fixed lambda - (Pro-
posed in Lee and Oh (2007))

pen.m= function(y,X,N,D,lambda,num.knots,p,epsilon=1e-6){

# store the values in matrix

results = matrix(ncol=n+1,nrow=N)

# start with penalized LS

tmp = pen.ls(y, X, D, lambda)

beta1 = as.vector( tmp$beta )

mhat1 = as.vector( X %*% tmp$beta )

sigma1 = tmp$Sbeta

results[1,] = c(mhat1, sigma1)
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mhat = mhat1

mbetaresults = matrix(ncol=num.knots+2+p-1, nrow=N)

mbetaresults[1,] = c(beta1)

mbeta = beta1

for (j in 2:N){

res = as.vector(y-X%*%mbeta)

# sigma = 1.4826*median(abs(res))

sigma = mad(res)

cval = 1.345*sigma

psi1 = ifelse( abs(res)<=cval, 2*res, 2*cval*sign(res) )

z = mhat + (psi1/2)

mbeta = solve( t(X)%*%X + D*lambda ) %*% t(X) %*% z

mhat = as.vector(X%*%solve(t(X)%*%X+D*lambda)%*%t(X)%*%z)

results[j,] = c(mhat,sigma)

mbetaresults[j,] = c(mbeta)

ifelse(((norm(mbetaresults[j,]-mbetaresults[j-1,])/

norm(mbetaresults[j-1,]))<epsilon),break,next)}

return(list(outmbeta=as.vector(mbetaresults[j,]),

sigma=as.vector(results[j,n+1]), iterations=j))}

Define robust cross validation function for M-penalized regression. This
function is proposed in Cantoni and Ronchetti (2001a).

mrcv = function(mm, y, X, D, lambda,n){

# mm has the fit returned by pen.m()

# y is the response vector

# X is the big design matrix

# D is the penalty matrix

# lambda is the value of the penalty constant to be evaluated

# n = length(y)

res = as.vector(y - X %*% mm$outmbeta )

sigma = mad(res)

cval = 1.345*sigma

psi1 = ifelse( abs(res)<=cval, 2*res, 2*cval*sign(res) )



5.1. R functions for: “S-Estimation for penalized regression
splines” 121

psi1dash = ifelse( abs(res)<=cval, 2,0 )

Epsi1dash = sum(psi1dash)/n

II= diag(c(rep(1,ncol(X))))

SS =X %*% solve(II+ lambda * (sigma/Epsi1dash)* D)%*%t(X)

return( mrcv=1/n * (sigma^2/Epsi1dash^2)* sum(psi1^2/

(1- diag(SS))^2 ))}

CV search for penalized M-estimators

pen.m.cv=function(y,X,NN,D,lambdas,num.knots,p,epsilon){

ll = length(lambdas)

# MCVs for the M estimator

best.cv = +Inf

mrcvs = rep(0,ll)

for(i in 1:ll){

mm= pen.m(y,X,NN,D,lambdas[i],num.knots,p,epsilon=1e-6)

mrcvs[i] = mrcv(mm, y, X, D, lambdas[i],n)

if( mrcvs[i] <= best.cv ){

best.mm = mm

best.cv = mrcvs[i]}}

# find the best lambda

#rlam = best.gcv

rlam= lambdas[mrcvs==best.cv]

yhat.m = as.vector( X %*% best.mm$outmbeta )

return(list(yhat = yhat.m, lam=rlam, gcv=min(mrcvs),

sigma.m=best.mm$sigma, iterations=best.mm$iterations))}

Define the function for penalized M-estimators with smoothing parameter
selection using genaralized cross validation. This function is proposed in
Lee and Oh (2007) and we used this function to compare our proposed
estimation method of Penalized S-estimators.

pen.m.gcv = function(y,X,N,D,lambdas,num.knots,p,epsilon){

# store the values in matrix

results = matrix(ncol=n+1,nrow=N)
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ll = length(lambdas)

# start with penalized LS

tmp = pen.ls.gcv(y, X, D, lambdas)

beta1 = as.vector( tmp$beta )

mhat1 = as.vector( X %*% tmp$beta )

sigma1 = tmp$Sbeta

results[1,] = c(mhat1, sigma1)

mhat = mhat1

mbetaresults = matrix(ncol=num.knots+2+p-1, nrow=N)

mbetaresults[1,] = c(beta1)

mbeta = beta1

for (j in 2:N){

res = as.vector(y-X%*%mbeta)

# sigma = 1.4826*median(abs(res))

sigma = mad(res)

cval = 1.345*sigma

psi1 = ifelse(abs(res)<=cval,2*res,2*cval*sign(res))

z = mhat + (psi1/2)

# GCV

gcvs = rep(0, ll)

for(i in 1:ll){

gcvs[i] = gcv(z, X, D, lambdas[i]) }

# find the best lambda

lambda = max( lambdas[ gcvs == min(gcvs) ] )

mbeta = solve( t(X)%*%X + D*lambda ) %*% t(X) %*% z

mhat = as.vector(X%*%solve(t(X)%*%X+D*lambda)%*%t(X)%*%z)

results[j,] = c(mhat,sigma)

mbetaresults[j,] = c(mbeta)

ifelse(((norm(mbetaresults[j,]-mbetaresults[j-1,])

/norm(mbetaresults[j-1,]))<epsilon),break,next)}

return(list(outmbeta=as.vector(mbetaresults[j,]),

yhat = mhat, lam = lambda, gcv = min(gcvs),

leeoutmatrix=as.vector(results[j,1:n]),
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sigma=as.vector(results[j,n+1]),iterations=j))}

Define the scale function

s.scale = function(r,cc=1.54764,b=.5,max.it=1000,ep){

s1 = mad(r)

if(abs(s1)<1e-10) return(s1)

s0 = s1 + 1

it = 0

while( ( abs(s0-s1) > ep ) && (it < max.it) ) {

it = it + 1

s0 = s1

s1 = s0*mean(Rho(r/s0,cc=cc))/b}

return(s1) }

We define here the function for the proposed estimation method of penal-
ized S-estimators as in (2.14) of Chapter 2.

pen.s = function(y,X,N,D,lambda,num.knots,p,beta1,

Sbeta1,cc=1.54764,b=.5,epsilon=1e-6){

# store the values in matrix

betahats = matrix(ncol=num.knots+2+p-1+1,nrow=N)

betahats[1,] = c(beta1,Sbeta1)

beta = beta1

for (i in 2:N){

# update Sbeta conditional on beta

r = as.vector(y-X%*%beta)

Sbeta = s.scale(r, cc=cc, b=b, N, ep=1e-4)

rs = r / Sbeta

Wbeta = Psi(rs, cc) / rs

taubeta = n*(Sbeta)^2 / sum( r^2 * Wbeta )

# update beta conditional on Sbeta from above

beta = solve( t(X * Wbeta) %*% X + (D*lambda/taubeta) )

%*% t(X * Wbeta) %*% y

betahats[i,] = c(beta,Sbeta)
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ifelse(((norm(betahats[i,]-betahats[i-1,])/

norm(betahats[i-1,]))<epsilon),break,next)}

return(list(outmatrix=betahats[1:i,1:(num.knots+2+p-1+1)],

estimates=betahats[i,1:(num.knots+2+p-1)],

scale=betahats[i,num.knots+2+p-1+1],

iterations=i,weights=Wbeta)) }

The next function is used to obtain the penalized S-estimates with different
initial candidate values, this is done to come as close as possible to the
global minimum of the criterion function, see Chapter 2.

initial.S= function(y, X, D,lambda, num.knots, p,

NN, cc, b, NNN){

# To get best beta w.r.t objective function

uubeta = matrix(0, ncol=(NNN+2),nrow=num.knots+2+p-1)

# We need to use the pen.s.gcv function instead of pen.s()

uuiteration = rep(0,(NNN+2))

# We need to use the pen.s.gcv function instead of pen.s()

uuscale = rep(0,(NNN+2))

# We need to use the pen.s.gcv function instead of pen.s()

uuweights = matrix(0, ncol=(NNN+2),nrow=n)

objval = rep(0,(NNN+2)) # To get min of objval

# Initial candidates from Resampling

for (ii in 1:NNN){

indices = sample(n,num.knots+2+p-1+1)

Xs = X[indices,]

ys = y[indices]

init = pen.ls(ys, Xs, D, lambda)

uu1 = pen.s(y, X, 20, D, lambda, num.knots, p,

init$beta, init$Sbeta, cc=cc, b=b)

uubeta[,ii]= as.vector(uu1$estimates)

uuscale[ii] = uu1$scale

uuweights[,ii] = as.vector(uu1$weights)

uuiteration[ii] = uu1$iterations
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objval[ii] = ((n*(uu1$scale^2))+(lambda*

as.numeric(t(uu1$estimates)%*%D%*%uu1$estimates)))}

# Initial candidates from M-estimator

initM = pen.m(y, X, N=NN, D, lambda, num.knots, p)

uuM = pen.s(y, X, 20, D, lambda, num.knots, p,

initM$outmbeta, initM$sigma, cc=cc, b=b)

uubeta[,(NNN+1)]= as.vector(uuM$estimates)

uuscale[(NNN+1)] = uuM$scale

uuweights[,(NNN+1)] = as.vector(uuM$weights)

uuiteration[(NNN+1)] = uuM$iterations

objval[(NNN+1)] = ((n*(uuM$scale^2))+(lambda*

as.numeric(t(uuM$estimates)%*%D%*%uuM$estimates)))

# Initial candidates from LS-estimator

initLS = pen.ls(y, X, D, lambda)

uuLS = pen.s(y, X, 20, D, lambda, num.knots, p,

initLS$beta, initLS$Sbeta, cc=cc, b=b)

uubeta[,(NNN+2)]= as.vector(uuLS$estimates)

uuscale[(NNN+2)] = uuLS$scale

uuweights[,(NNN+2)] = as.vector(uuLS$weights)

uuiteration[(NNN+2)] = uuLS$iterations

objval[(NNN+2)] = ((n*(uuLS$scale^2))+(lambda*

as.numeric(t(uuLS$estimates)%*%D%*%uuLS$estimates)))

# find the best estimators with respect to objective function

bestbeta = as.vector( uubeta[ ,objval == min(objval)])

weights = s.vector(uuweights[ ,objval == min(objval)])

scale = uuscale[objval == min(objval)]

iterations = uuiteration[objval == min(objval)]

return(list(estimates=bestbeta, scale=scale, weights=weights,

iterations=iterations)) }

We define the function for robust generalized cross validation for S-penalized
regression splines as given in (2.18). We have used this function to select
the smoothing parameter for the penalized S-regression spline estimation
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method for all simulation studies and for the real data examples in Chapter
2.

rgcv = function(uu, y, X, D, lambda) {

# uu has the fit returned by pen.s()

# y is the response vector

# X is the big design matrix

# D is the penalty matrix

# lambda is the value of the penalty constant to be evaluated

n = length(y)

nw = sum( uu$weights > 0 )

r = as.vector(y - X %*% uu$estimates )

aa = n * uu$scale^2 / sum( r^2 * uu$weights )

H = (X * uu$weights) %*% solve( t(X * uu$weights) %*% X +

lambda/aa * D ) %*% t(X * uu$weights)

return(rgcv=nw * sum( r^2 * uu$weights )

/(nw - sum(diag(H)))^2)}

The smoothing parameter selection using a generalized cross validation
(GCV) search for penalized S-estimators function is given here.

pen.s.gcv = function(y, X, D, lambdas, num.knots,

p, NN, cc, b,NNN){

ll = length(lambdas)

# GCVs for the S estimator

best.gcv = +Inf

rgcvs = rep(0,ll)

for(i in 1:ll){

uu= initial.S(y, X, D, lambdas[i], num.knots,

p, NN, cc, b, NNN)

rgcvs[i] = rgcv(uu, y, X, D, lambdas[i])

if( rgcvs[i] <= best.gcv ) {

best.uu = uu

best.gcv = rgcvs[i] }}
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# find the best lambda

rlam= lambdas[rgcvs==best.gcv]

yhat.s = as.vector( X %*% best.uu$estimates )

return(list(yhat = yhat.s, lam=rlam, gcv=min(rgcvs),

iter.s=best.uu$iterations))}

5.2 R functions for: “A comparison of robust ver-

sions of the AIC based on M, S and MM-

estimators”

We define the function for classical AIC selection (or more precisely, for
TIC selection) for normal regression models as, AIC = 2n log(

√
SSE/n)+

2Tr(J−1K) + n log(2π) + n. This differs from the AIC for normal models
that is used in most statistical software packages in the fact that we do
not just count the number of parameters but use instead Tr(J−1K).

AIC.scale.L= function(y, X,n,beta.L,scale.L){

U=UU=UU3=UU4=matrix(ncol=1,nrow=n)

for(i in 1:n){

U[i,]=((y[i,]-X[i,] %*% beta.L)^2/scale.L^4)

UU3[i,]= (((y[i,]-X[i,] %*% beta.L)/scale.L)^3)

UU4[i,]= (((y[i,]-X[i,] %*% beta.L)/scale.L)^4)

UU[i,]= t(X[i,]) %*% (X[i,])}

SCJ = 2/scale.L^2

SCK=(2+(sum(UU4)/n)-3)/scale.L^2

SCK1=(sum(UU3)/n)/scale.L^2

SCK.c=SCK1 *as.matrix(c(colMeans(X)),ncol(X),1)

SC.c=matrix(0,ncol(X),1)

SC.r=matrix(0,1,ncol(X))

J.beta= (t(X) %*% X)/(n*scale.L^2)

J=rbind(cbind(J.beta,SC.c),cbind(SC.r,SCJ))

inv.J= solve(J)

K.beta=(t(X)%*% X)/(n*scale.L^2)
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K=rbind(cbind(K.beta,SCK.c),cbind(t(SCK.c),SCK))

AIC.CL =2* n*log(sqrt(SSE/(n)))+ 2 *sum(diag(inv.J %*% K))

+ n * log(2*pi)+n

return(AIC.CL) }

We define the AIC function for M-estimation where J and K are the
full matrices, considering β and σ2 as parameters (AIC.M1). We used this
function in Table 3.9 in Chapter 3.

AIC.scale.M= function(y, X,n,beta.M,scale.M,cval=1.345){

U=U1=U2=UU=UU1=UUU=matrix(ncol=1,nrow=n)

UU2=matrix(ncol=ncol(X),nrow=n)

for(i in 1:n){

U[i,]=dPsiM((y[i,]-X[i,] %*% beta.M)/scale.M ,cval)

U1[i,]=(dPsiM((y[i,]-X[i,] %*% beta.M)/scale.M ,cval))*

(((y[i,]-X[i,] %*% beta.M)/scale.M)^2)

U2[i,]=(PsiM((y[i,]-X[i,] %*% beta.M)/scale.M ,cval))*

((y[i,]-X[i,] %*% beta.M)/scale.M)

UU[i,]= (PsiM((y[i,]-X[i,] %*% beta.M)/scale.M ,cval))^2

UU1[i,]= ((PsiM((y[i,]-X[i,] %*% beta.M)/scale.M ,cval))^2)*

(((y[i,]-X[i,] %*% beta.M)/scale.M)^2)

UU2[i,]=X[i,]*(PsiM((y[i,]-X[i,] %*% beta.M)/scale.M,cval))^2*

((y[i,]-X[i,] %*% beta.M)/scale.M)

UUU[i,]=RhoM((y[i,]-X[i,] %*% beta.M)/scale.M ,cval)}

SC.c=matrix(0,ncol(X),1)

SC.r=matrix(0,1,ncol(X))

J.betaM=(t(X)%*%diag(as.vector(U))%*% X)*(1/(n*scale.M^2))

SCJM = (sum(U1)-2* sum(U2)-n) * (1/(n*scale.M^2))

JM=rbind(cbind(J.betaM,SC.c),cbind(SC.r,SCJM))

inv.JM= solve(JM)

K.betaM=(t(X)%*%diag(as.vector(UU))%*%X)*(1/(n*scale.M^2))

SCKM=(sum(UU1)-2* sum(U2)+n) * (1/(n*scale.M^2))

SCKM.c=as.matrix(c(colMeans(UU2)),ncol(X),1)/(n*scale.M^2)

KM=rbind(cbind(K.betaM,SCKM.c),cbind(t(SCKM.c),SCKM))
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AIC.M = 2* n*log(scale.M)+ 2*(sum(diag(inv.JM %*%KM)))

return(AIC.M)}

We define the AIC function for M-estimation where J and K are matrices
considering only the vector β as parameters (AIC.M in (3.14)). We used
this function in Chapter 3 for all simulation studies and real data examples.

AIC.M= function(y, X, beta.m,scale.m, cval=1.345){

U=UU=UUU=matrix(ncol=1,nrow=n)

for(i in 1:n){

U[i,]=dPsiM((y[i,]-X[i,] %*% beta.m)/scale.m ,cval)

UU[i,]=(PsiM((y[i,]-X[i,] %*% beta.m)/scale.m ,cval))^2 }

J= (t(X) %*% diag(as.vector(U))%*% X*(1/(scale.m^2)))/n

inv.J= solve(J)

K= (t(X) %*% diag(as.vector(UU))%*% X*(1/(scale.m^2)))/n

AIC = 2*n*(log(scale.m)) + 2* sum(diag(inv.J %*%(K)))

return(AIC) }

We define the AIC function for S-estimation where J and K are full ma-
trices, considering β and σ2 (AIC.S1). We used this function in Table 3.9
in Chapter 3.

AIC.scale.S= function(y, X,n,beta.S,scale.S,cc,b) {

U=U1=U2=UU=UU1=matrix(ncol=1,nrow=n)

UU2=matrix(ncol=ncol(X),nrow=n)

for(i in 1:n){

U[i,]=dPsi((y[i,]-X[i,] %*% beta.S)/scale.S ,cc)

U1[i,]=(dPsi((y[i,]-X[i,] %*% beta.S)/scale.S ,cc))*

(((y[i,]-X[i,] %*% beta.S)/scale.S)^2)

U2[i,]=(Psi((y[i,]-X[i,] %*% beta.S)/scale.S ,cc))*

((y[i,]-X[i,] %*% beta.S)/scale.S)

UU[i,]=(Psi((y[i,]-X[i,] %*% beta.S)/scale.S ,cc))^2

UU1[i,]=((Psi((y[i,]-X[i,] %*% beta.S)/scale.S ,cc))^2)*

(((y[i,]-X[i,] %*% beta.S)/scale.S)^2)

UU2[i,]=X[i,]*(((Psi((y[i,]-X[i,]%*%beta.S)/scale.S,cc))^2)*
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((y[i,]-X[i,] %*% beta.S)/scale.S)) }

J.betaS= (t(X)%*%diag(as.vector(U))%*%X)*(1/(n*scale.S^2))

SCJS = (sum(U1)-2* sum(U2)-n) * (1/(n*scale.S^2))

SC.c=matrix(0,ncol(X),1)

SC.r=matrix(0,1,ncol(X))

JS=rbind(cbind(J.betaS,SC.c),cbind(SC.r,SCJS))

inv.JS= solve(JS)

K.betaS= (t(X)%*%diag(as.vector(UU))%*%X)*(1/(n*scale.S^2))

SCKS=(sum(UU1)-2* sum(U2)+n) * (1/(n*scale.S^2))

SCKS1=as.matrix(c(colMeans(UU2)),ncol(X),1)*(1/(n*scale.S^2))

KS=rbind(cbind(K.betaS,SCKS1),cbind(t(SCKS1),SCKS))

AIC.S = 2* n*log(scale.S) + 2 *sum(diag(inv.JS %*%KS))

return(AIC.S) }

We define the AIC function for S-estimation where J and K are matrices
considering only the vector β as parameters (AIC.S in (3.12)). We used this
function in Chapter 3 for all simulation studies and real data examples. We
used this function for MM-estimators (AIC.MM in (3.15)) by using instead
of S-estimators the regression MM-estimators and scale MM-estimators.

AIC.S= function(y, X, beta.s,scale.s, cc=1.54764){

U=UU=matrix(ncol=1,nrow=n)

for(i in 1:n){

U[i,]=dPsi((y[i,]-X[i,] %*% beta.s)/scale.s ,cc)

UU[i,]=(Psi((y[i,]-X[i,] %*% beta.s)/scale.s ,cc))^2 }

J= (t(X)%*%diag(as.vector(U))%*% X*(1/(scale.s^2)))/n

inv.J= solve(J)

K= (t(X)%*%diag(as.vector(UU))%*% X*(1/(scale.s^2)))/n

AIC =2*n*(log(scale.s))+ 2* sum(diag(inv.J %*%(K)))

return(AIC) }

We define the AIC function for S-estimation with J and K the matrices
that only consider β, for the uniform asymptotic results (AIC.US in (3.16)).
We used this function in Chapter 3 for all simulation studies and real data
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examples. We can use this function for MM-estimators AIC.UMM in (3.18)
too.

AIC.scale.S.unif= function(y, X, beta.s,scale.s, cc, b){

U=UU=UU2=UUU=UUUb=UUUb2=UUUU=BH1=DH1=matrix(ncol=1,nrow=n)

for(i in 1:n){

U[i,]=dPsi((y[i,]-X[i,]%*%beta.s)/scale.s,cc)

UU[i,]=Psi((y[i,]-X[i,]%*%beta.s)/scale.s,cc)

UU2[i,]=(Psi((y[i,]-X[i,]%*%beta.s)/scale.s,cc))^2

UUU[i,]=Rho(((y[i,]-X[i,]%*%beta.s)/scale.s),cc)

UUUb[i,]=Rho(((y[i,]-X[i,]%*%beta.s)/scale.s),cc)-b

UUUb2[i,]=(Rho(((y[i,]-X[i,]%*%beta.s)/scale.s),cc)-b)^2

UUUU[i,] = UU[i,]*UUUb[i,]

BH1[i,]=(UU[i,] * ((y[i,]-X[i,] %*% beta.s)/scale.s))

DH1[i,]=U[i,] * ((y[i,]-X[i,] %*% beta.s)/scale.s) }

Vsi= (t(X)%*%X)/(scale.s^2)

Jsi= (t(X)%*%diag(as.vector(U))%*%X*(1/(scale.s^2)))/n

inv.Jsi= solve(Jsi)

dh=sum(DH1)/n * as.matrix(X/scale.s)

bh=sum(BH1)/n

dbh=dh/bh

E1=(t(X)%*%diag(as.vector(UU2))%*%X*(1/(scale.s^2)))/n

E2=(t(dbh)%*%diag(as.vector(UUUb2))%*%dbh*(1/(scale.s^2)))/n

E3=((t(X)/scale.s)%*%diag(as.vector(UUUU))%*%dbh)/n

E4=(t(dbh)%*%diag(as.vector(UUUU))%*%(X/scale.s))/n

Ksi= (E1+E2-E3-E3)

AIC.CS = 2*n*(log(scale.s))+2*sum(diag(inv.Jsi %*%Ksi))

return(AIC.CS) }

AIC based on log(scale) and on the number of parameters in the model
(AIC.M2 and AIC.S2). We used this function in Table 3.9 in Chapter 3.

AIC.scale= function(y, X,n,scale){

AIC= 2* n*log(scale) + 2 *(ncol(X)+1)

return(AIC) }



132 Chapter 5 - Implementations in the software package R

Generalized information criteria (GICS) based on S-estimator. We used
this function in Table 3.9 in Chapter 3.

GIC.scale.S= function(y, X,n,beta.S,scale.S,cc,b){

U=U2=UU=UU3=UUU=matrix(ncol=1,nrow=n)

U1=U3=UU1=UU2=matrix(ncol=ncol(X),nrow=n)

for(i in 1:n){

U[i,]=dPsi((y[i,]-X[i,] %*% beta.S)/scale.S ,cc)

U1[i,]=X[i,]*(dPsi((y[i,]-X[i,]%*%beta.S)/scale.S,cc))*

(((y[i,]-X[i,]%*%beta.S)/scale.S))

U2[i,]=(Psi((y[i,]-X[i,]%*%beta.S)/scale.S,cc))*

((y[i,]-X[i,]%*%beta.S)/scale.S)

U3[i,]=(Psi((y[i,]-X[i,]%*%beta.S)/scale.S,cc))%*% X[i,]

UU1[i,]=X[i,]*((Psi((y[i,]-X[i,]%*%beta.S)/scale.S,cc))^2)*

(((y[i,]-X[i,]%*%beta.S)/scale.S)^2)

UU2[i,]=X[i,]*(((Psi((y[i,]-X[i,]%*%beta.S)/scale.S,cc)))*

(((y[i,]-X[i,]%*%beta.S)/scale.S)^2-1))

UU3[i,]= (Psi((y[i,]-X[i,]%*%beta.S)/scale.S,cc))*

((y[i,]-X[i,]%*%beta.S)/scale.S)*

(((y[i,]-X[i,]%*%beta.S)/scale.S)^2-1)

UUU[i,]=((y[i,]-X[i,]%*%beta.S)/scale.S)^2}

b11=(t(X)%*%diag(as.vector(U))%*%X)*(1/(n*scale.S^2))

b12=as.matrix(c(colMeans(U1)),ncol(X),1)*(1/(n*scale.S^2))

b21=-t(as.matrix(c(colMeans(U3)),ncol(X),1))*(1/(n*scale.S^2))

b22=-sum(U2)/(n*scale.S^2)

B=rbind(cbind(b11,b12),cbind(b21,b22)); inv.B=solve(B)

a11=(t(X)%*%diag(as.vector(U2))%*% X)*(1/(n*scale.S^2))

a12=as.matrix(c(colMeans(UU2)),ncol(X),1)*(1/(n*scale.S^2))

a21=t(as.matrix(c(colMeans(UU1)),ncol(X),1)*(1/(n*scale.S^2)))

a22=sum(UU3)/(n*scale.S^2)

A=rbind(cbind(a11,a12),cbind(a21,a22))

GIC.S = 2* n*log(scale.S) + 2 *sum(diag(inv.B %*%A))

return(GIC.S) }
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We used the Huber loss function to compute the M-estimator in this dis-
sertation and define the ρ function, the first derivative of the ρ function
(ψ function) and the first derivative of the ψ function here.

# Define Rho Huber function

RhoM= function(x, cval){

Rho1 = ifelse(abs(x)<=cval,(x^2),(2*cval*abs(x)-cval^2))

return(Rho1) }

# Define Psi Huber function

PsiM= function(x, cval) {

Psi1 = ifelse(abs(x)<=cval,2*x,2*cval*sign(x))

return(Psi1) }

# Define dPsi Huber function

dPsiM= function(x, cval){

dPsi1 = ifelse(abs(x)<=cval,2,0)

return(dPsi1)}

All subsets search, make an indicator matrix containing all possible com-
binations of variables. We used this function in all simulation studies and
real data example in Chapter 3.

combinations = function(n){

comb = NULL

if (n<25) {

for( i in 1:n) comb = rbind(cbind(1,comb),cbind(0,comb))

return(comb) }

else {error("this value will probably block your computer,

try on your own risk")} }
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5.3 R-functions for: “Robust model selection for

additive penalized regression splines models”

A translated Tukey biweight ρ function and the corresponding weight func-
tion of the translated Tukey biweight ρ function (this is taken from Copt
and Victoria-Feser, 2006).

biwt.rho<- function(x,c)

{

hulp = x^2/2-x^4/(2*c^2)+x^6/(6*c^4);

rho = hulp*(abs(x)<c)+c^2/6*(abs(x)>=c)

rho

}

biwt.wt <- function(e,k){

ifelse (abs(e) <= k,(1 - (e/k)^2)^2,0)

}

biwt.psi <- function(e,k){

ifelse (abs(e) <= k, e*(1 - (e/k)^2)^2,0)

}

We defined the S-estimators for additive penalized spline smoothing for
the case with outliers only on individual level in Result 4.1. We used this
function for all simulation studies in Chapter 4. S-estimators for additive
penalized spline smoothing for the case with outliers only on the individual
level

AdditivePenS1 = function(y,X,Z,NN,N,n,m,p,q,beta1,u1,

R1,G1,V1, c1, epsilon){

#store the values in matrix

betahats = matrix(ncol=(p+(n*q)),nrow=NN)

betahats[1,] = c(beta1,u1)

beta=beta1; u=u1; R=R1; G=G1; V=V1
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for (j in 2:NN){

# Compute mahalanobis distance and weight function

d2=rep(0,N); d1=rep(0,N)

for(i in 1:N){

mu = X[i,]%*% beta + Z[i,]%*% u

d2[i] = mahalanobis(Y[i],mu,R[i,i])}

d1 = sqrt(d2)

h = floor((N+(p+(n*q))+1)/2)

quantile = h/(N+1)

d=(d1*sqrt(qchisq(quantile,(p+(n*q)))))/(sort(d1)[h])

# Compute the weights

wld =rep(1,N)

wld = as.vector(biwt.wt(d1,c1))

W=diag(wld)

tau1=2*n*m*(1/as.vector(t(d1)%*%W%*%d1))

# Compute the fixed effect and random effect parameters

beta=as.vector(ginv(t(X)%*%W%*%ginv(V)%*% X)%*%t(X)

%*%W%*%ginv(V)%*%Y)

u=as.vector((tau1/(2*n))*G%*%t(Z)%*%W%*%ginv(V)

%*%(Y-X%*%beta))

# Compute the variance components

G=(as.vector(t(u)%*% u)/(n*q))*diag(rep(1,(n*q)))

R=(as.vector((1/as.vector(t(d1)%*%W%*%d1))%*%

(t(Y-X%*%beta-Z%*%u)%*%W%*%(Y-X%*%beta-Z%*%u))))

*diag(rep(1,N))

V= R+(Z%*%(n/as.vector(t(d1)%*%W%*%d1)*G)%*%t(Z))%*%W

betahats[j,] <- c(beta,u)

ifelse(((norm(betahats[j,]-betahats[j-1,]))<epsilon),

break,next)}

yhat= X%*% beta+Z%*%u

return(list(beta=betahats[j-1,1:p],

u=betahats[j-1,(p+1):(p+q)],

R=R, G=G,V=V, iterations=j-1,yhat=yhat))}
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We defined the S-estimators for additive penalized spline smoothing for the
case with outliers both on individual level and cluster level in Result 4.2.
We used this function for all simulation studies in Chapter 4.

AdditivePenS2 = function(Y, X,Z,NN,N,n,m,p,q,r,beta1,

u1,R1,G1,V1, c1, epsilon){

#store the values in matrix

betahats = matrix(ncol=(p+(n*q)),nrow=NN)

betahats[1,] = c(beta1,u1)

beta=beta1; u=u1; R=R1; G=G1; V=V1

for (j in 2:NN){

# Compute mahalanobis distance and weight function

d2=rep(0,N); d1=rep(0,N)

for(i in 1:N){

mu = X[i,]%*% beta + Z[i,]%*% u

d2[i] = mahalanobis(Y[i],mu,R[i,i])}

d1 = sqrt(d2)

h = floor((N+(p+(q*n))+1)/2)

quantile <- h/(N+1)

d=(d1*sqrt(qchisq(quantile,(p+(n*q)))))/(sort(d1)[h])

# Compute the weights

wld =rep(1,N)

wld = as.vector(biwt.wt(d1,c1))

W=diag(wld)

tau1=2*n*m*(1/as.vector(t(d1)%*%W%*%d1))

# Compute distance22 and weight2 function

d22=rep(0,(n*q))

for(kk in 1:(n*q)){

d22[kk] = (sqrt(1/G[kk,kk]) *u[kk])}

# Compute the weights

wld2 =rep(1,(n*q))

wld2 = as.vector((Psi(d22,c1)/d22))

W2=diag(wld2)
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gw2.inv=c(rep(1,(n*q)))

for(k in 1:(n*q) ){

gw2.inv[k] = G[kk,kk]/(wld2[j])}

GW2.INV = diag(gw2.inv)

tau2 = 2*q*r*(1/as.vector(t(d22)%*%W2%*%d22))

# Compute the fixed effect and random effect parameters

beta=as.vector(ginv(t(X)%*%W%*%ginv(V)%*%X)%*%t(X)

%*%W%*%ginv(V)%*%Y)

u=as.vector(((q*tau1)/(n*tau2))*((GW2.INV)%*%t(Z)%*%W

%*%ginv(V)%*%(Y-X%*% beta)))

# Compute the variance components

G=(as.vector(t(u)%*%W2%*% u)*(tau2/(2*(n*q)^2)))

*diag(rep(1,(n*q)))

R=(as.vector((1/as.vector(t(d1)%*%W%*% d1)) %*%

(t(Y-X%*%beta-Z%*%u)%*%W%*%(Y-X%*%beta-Z%*%u))))

*diag(rep(1,N))

V=R+((q*tau1)/(n*tau2))*(Z%*%(GW2.INV)%*%t(Z)%*%W)

betahats[j,] = c(beta,u)

ifelse(((norm(betahats[j,]-betahats[(j-1),]))<epsilon)

,break,next)

}

yhat = (X%*% beta) + (Z %*% u)

return(list(beta=betahats[(j-1),1:p],

u=betahats[(j-1),(p+1):(p+q)],

R=R, G=G,V=V, iterations=j-1,yhat=yhat))

}

We defined the function for the conditional AIC for linear mixed models
based on S-estimators for the case with outliers only on individual level in
Theorem 4.1. We used this function for all simulation studies in Chapter 4.
We used the function for the Conditional AIC for the linear mixed models
based on maximum likelihood estimators for only outliers on individual
level from Greven and Kneib (2010).
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ccAIC.S1=function(Y,X,Z,beta,u,R,G,V,N,n,m,p,q,c1){

#Compute the weights

d2 = rep(0,N)

d = rep(0,N)

for(i in 1:N){

mu = X[i,]%*%beta+Z[i,]%*%u

d2[i] = mahalanobis(Y[i],mu,R[i,i])

}

d1 = sqrt(d2)

h = floor((N+(p+(n*q))+1)/2)

quantile = h/(N+1)

d = (d1*sqrt(1/qchisq(quantile,(p+(n*q)))))/(sort(d1)[h])

wld =rep(1,N)

wld = as.vector(biwt.wt(d,c1))

W=diag(wld)

tau1 = 2*n*m*(1/as.vector(t(d1)%*%W%*%d1))

#Conditional AIC with \hat\rho penalty term

H.S = (X%*%solve(t(X)%*%W%*%solve(V)%*%X)%*%t(X)%*%W

%*%solve(V))+(Z %*%((n*as.vector(solve(t(d1)%*% W

%*%d1)))*G)%*%t(Z)%*%W%*%solve(V))-(Z%*%

((n*as.vector(solve(t(d1)%*%W%*%d1)))*G)%*%t(Z)

%*%W%*%solve(V)%*%X%*%solve(t(X)%*%W%*%solve(V)

%*%X)%*%t(X)%*%W%*%solve(V))

C.AIC.S= -2*determinant(R)$modulus[1]- 2*sum(diag(H.S))

# Conditional AIC with \phi_s1 penalty term

solveV=solve(V) #### inverse of V matrix

IN=diag(1,N,N) #### Identity matrix with N x N

# define P matrix

P =IN-X%*%solve(t(X)%*%W%*%solveV%*%X)%*%t(X)

%*%W%*%solveV
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dd.sig0=matrix(0,N,1)

ddi.sig0=dWi.sig0=c(rep(0,N))

dV.sig0=dW.sig0=matrix(0,N,N)

for(i in 1:N){

ddi.sig0[i]=(1/(2*d1[i]))*t(Y[i]-X[i,]%*%beta+Z[i,]%*%u)

*(1/R[i,i])*(1/R[i,i])*

(Y[i]-X[i,]%*%beta+Z[i,]%*%u)

}

dd.sig0 = as.matrix(ddi.sig0)

for(i in 1:N){

dWi.sig0[i]=((d[i]*Psi(d[i],cc=c1)-dPsi(d[i],cc=c1))/

d[i]^2)*ddi.sig0[i]

}

dW.sig0=diag(dWi.sig0)

dtau1.sig0=-2*m*n*(1/as.vector(t(d)%*%W%*%d))*

(as.vector(2*(t(d)%*%W%*%dd.sig0)+

(t(d)%*%dW.sig0%*%d)))*

(1/as.vector(t(d)%*%W%*%d))

# Equation (4.35)

dV.sig0=IN+(Z%*%G%*%t(Z)%*%W)*((1/(2*n))*dtau1.sig0)+

(tau1/(2*n))*(Z%*% G%*%t(Z)%*%dW.sig0)

dRVP.sig0=dRVP.sigj=matrix(0,N,N)

dsig0.Yk=dhsig0.sig0=dhsig0.Yk=matrix(0,1,1)

dsigj.Yk=dhsigj.sigj=dhsigj.Yk=matrix(0,1,1)

dRVP.sigj =array(0,dim=c(N,N,(n*q)))

dVP.sig0=matrix(0,N,N)

# Equation (4.34)

dRVP.sig0=solveV%*%P-R%*%solveV%*%(dV.sig0-
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(X%*%solve(t(X)%*% W%*%solveV %*% X)%*%t(X)%*%

(W%*%solveV%*%dV.sig0-dW.sig0)))%*%solveV%*%P

dVP.sig0=-solveV%*%(dV.sig0-(X%*%solve(t(X)%*% W%*%solveV

%*%X)%*%t(X)%*%(W%*%solveV%*%dV.sig0

-dW.sig0)))%*%solveV%*%P

dd.Yk=matrix(0,N,1)

ddi.Yk=dWi.Yk=c(rep(0,N))

dW.Yk=matrix(0,N,N)

for(i in 1:N){

ddi.Yk[i]=(1/(d1[i]))*t(Y[i]-X[i,]%*%beta+Z[i,]%*%u)

*(1/R[i,i])

}

dd.Yk = as.matrix(ddi.Yk)

for(i in 1:N){

dWi.Yk[i]=((d[i]*dPsi(d[i],cc=c1)-Psi(d[i],cc=c1))/

d[i]^2)*ddi.Yk[i]

}

dW.Yk=diag(dWi.Yk)

# Equation (4.32) and Equation (4.33)

B=matrix(0,N,N)

sum.dRVP.sigj.Y.dsigj.Yk=matrix(0,N,1)

for(k in 1:N){

dhsig0.sig0= -(n/R[k,k]^4)-(((1/n)*t(Y))%*%t(P)%*%solveV

%*%(((W %*%solveV%*%P%*%Y)*dtau1.sig0)+

((2*tau1)*(W%*%dVP.sig0%*%Y))+

((tau1*dW.sig0)%*%solveV%*%P%*%Y)))

dtau1.Yk=-2*m*n*(1/as.vector(t(d)%*%W%*%d))*

(as.vector(2*(t(d)%*%W%*%dd.Yk)+

(t(d)%*%dW.Yk%*%d)))*(1/as.vector(t(d)%*%W%*%d))
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dV.Yk=matrix(0,N,N)

dV.Yk=(((1/(2*n))*dtau1.Yk*Z)%*%G%*%t(Z)%*%W)+

((Z*(tau1/(2*n)))%*%G%*%t(Z)%*%dW.Yk)

dVPk.Yk=dPk.Yk=matrix(0,N,1)

dPk.Yk=(X%*%solve(t(X)%*%W%*%solveV%*%X)%*%t(X)%*%

(W%*%solveV%*%dV.Yk-dW.Yk))%*%solveV%*%P[,k]

dVPk.Yk=-solveV%*%dV.Yk%*%solveV%*%P[,k]

+solveV%*%dPk.Yk

dhsig0.Yk=-(((1/n)*Y[k])*t(P[,k]))%*%solveV%*%(((2*tau1*W)

%*%solveV%*%P[,k])+((dtau1.Yk*W)%*%solveV%*%

(P[,k]*Y[k]))+((2*tau1*W)%*%(dVPk.Yk*Y[k]))+

((tau1*dW.Yk)%*%solveV%*%(P[,k]*Y[k])))

#Equation (4.39)

dsig0.Yk= -( 1/as.vector(dhsig0.sig0)) * dhsig0.Yk

for(j in 1:(n*q)){

#Equation (4.36)

dRVP.sigj[,,j]=(-(tau1/(2*n))*R)%*%(solveV%*%P%*%Z[,j]%*%

t(Z[,j])%*%W%*%solveV%*%P)

dhsigj.sigj=-((n*q)/(G[j,j])^4)-(2*(tau1/(2*n))^3*t(t(Z[,j])

%*%W%*%solveV%*%P%*%Y))%*%Z[,j]%*%W%*%solveV

%*%P%*%Z[,j]%*%t(Z[,j])%*%W%*%solveV%*%P%*%Y

dhsigj.Yk=-(2*(tau1/(2*n))*t(t(Z[,j])%*%W%*%solveV%*%P%*%Y))

%*%(((tau1/(2*n))*t(Z[,j])%*%((W%*%solveV%*%P[,k])

+(dW.Yk%*%solveV%*%(P[,k]*Y[k]))+(W%*%

(dVPk.Yk*Y[k]))))+(((dtau1.Yk/(2*n))*t(Z[,j]))%*%

W%*%solveV%*%(P[,k]*Y[k])))
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#Equation (4.40)

dsigj.Yk[j] = -( 1/as.vector(dhsigj.sigj)) * dhsigj.Yk

sum.dRVP.sigj.Y.dsigj.Yk=sum.dRVP.sigj.Y.dsigj.Yk+

(dRVP.sigj[,,j]%*%Y %*%dsigj.Yk[j])

}

B[,k]=dRVP.sig0%*%Y%*%dsig0.Yk+sum.dRVP.sigj.Y.dsigj.Yk

}

# Equation (4.24) and (4.31)

phiS1= sum(diag(IN - (R %*% solveV %*% P)- B))

# Equation (4.26)

CC.AIC.S1= -2* determinant(R)$modulus[1]- 2*phiS1

return(list(CAICS=C.AIC.S,CCAICS1=CC.AIC.S1))

}

We can define the function for the conditional AIC for linear mixed models
based on S-estimators for the case with outliers both on individual level
and cluster level in Theorem 4.2 similarly and use the S-estimators from
Result 4.2.



Chapter 6

Future research

Further research could be done on some specific issues related to the results
in this dissertation. I present some possible extensions in this Chapter.

We used and proposed the model selection method AIC for data sets
where the sample size is strictly larger than the number of independent
variables. In practice, often we need to deal with data sets that contain
more independent variables than the sample size. It would be interesting
to extend our current work to derive robust model selection methods based
on S-estimators for data with more independent variables than the sample
size. One idea could be to add an l1 penalty to the optimization criterion
in the spirit of the lasso estimation method (Tibshirani, 1996). This would
form an extension on the robust lasso method based on least absolute
deviation (LAD) estimators (Wang et al., 2007).

Another interesting direction for further research is an extension of
the robust model selection methods in this dissertation to the context of
generalized linear mixed models. There exist several non robust model
selection methods for generalized linear mixed models in the literature,
for example, Cai et al. (2006), Chen et al. (2003) and Lavergne et al.
(2008). Robust estimation based on M-estimators in generalized linear
mixed models is proposed in Yau and Kuk (2002). Some of the ideas in the
given references could turn out useful for the application of S-estimation
methods and of model selection using these S-estimation in this setting.
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Another possible extension of the robust model selection of mixed mod-
els is in the context of survival models and of frailty models. Liang and
Zou (2008) and (Ibrahim and Chen, 2005) proposed some model selection
methods for survival models. Hjort and Claeskens (2006) is concerned with
variable selection methods for the proportional hazards regression model
based on a focussed information criterion. Xu et al. (2009) proposed a
semiparametric model selection method with application to proportional
hazards mixed models using profile likelihood. All of these model selection
methods are non robust for outliers in the data. Ideas in those papers
could be used to propose a robust version of AIC for survival models. The
frailty model, on the other hand, can be represented in a mixed model form,
which suggests using a robust conditional Akaike information criterion for
linear mixed models. Ha et al. (2007) study an Akaike information crite-
rion (AIC) for selecting a frailty structure from a set of non-nested frailty
models. They propose two new AIC criteria, one based on a conditional
likelihood and the other on an extended restricted likelihood (ERL) as
given by Lee and Nelder (1996). The frailty models and several numerical
techniques are discussed in detail in the book (Duchateau and Janssen,
2008).
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